
- •1.(2) Электрогенератор. Электродвигатель. Применение их в технике и технологиях.
- •2. (2) Топливные элементы. Водородная энергетика.
- •5. (2) Радиактивность и закон радиоактивного распада. Изотопы. Технологии утилизации радиоактивных отходов и материалов.
- •6.(2) Производство металлов (сталь, чугун, алюминий).
- •7. Новые материалы. Синтетические материалы. Полимерные материалы. Термопласты и реактопласты, эластомеры, пластмассы и их применение в технике и технологиях.
- •8.(2) Поведение веществ в магнитных полях. Ферромагнетики и ферриты и их применение в технике и технологиях.
- •9.(2) Поведение веществ в электрических полях. Диэлектрики и пьезоэлектрики и их применение в технике и технологиях.
- •10.(2) Ядерная энергия и проблемы ее использования. Термоядерный синтез. Энергоэффективные технологии.
- •11.(2) Источники энергии. Способы преобразования энергии. Тэс, гэс, аэс. Альтернативная энергетика.
- •12.(2) Сущность параметров давления и температуры, их влияние на фазовое состояние вещества, использование на практике, в технике и технологиях.
- •13.(2) Свойства металлов (электропроводность, звукопроводность, твердость, пластичность, ковкость, плавкость, плотность).
- •14.(2) Электромагнитное излучение и его природа. Шкала электромагнитных волн, области применения различных частотных диапазонов в технике и технологиях.
- •15.(2) Взаимодействие электромагнитного поля и движущегося заряда. Сила лоренца. Принцип действия электрогенераторов.
- •16.(2) Закон фарадея и принцип действия электрических трансформаторов. Линии электропередач.
- •17.(2) Техническое использование переменного тока.
- •18.(2) Основные закономероности цепей переменного тока. Закон ома для цепей переменного тока. Последовательный и переменный резонансы. Явление резонанса и его применение в науке и технологиях.
- •20.(2) Физические основы акустики. Эволюция средств звукозаписи и воспроизведения звука.
- •21.(2) Новые технологии передачи и хранения информации.
- •22.(2) Квантовые эффекты в микромире. Виды спектров. Спектральный анализ и его применение в технике и технологиях.
- •23.(2) Выделение информации на фоне помех. Использование явления резонанса для выделения полезного сигнала. Использование и применение явления резонанса в науке и технологиях.
- •24.(2) Эффект доплера и его применение в технике и технологиях.
- •25.(2) Физические эффекты (эффект эжекции, гироскопический эффект, центробежная сила, эффект доплера, акустическая кавитация, диффузия, гидростатическое давление) в машиностроении.
- •26.(2) Тепловая машина. Цикл карно. Паровая машина. Использование тепловых машин в технике и технологиях.
- •27.(2) Промышленная переработка топлива (коксование угля, крекинг нефти, переработка нефти методом ректификации).
- •28.(2) Классы точности измерительных приборов. Абсолютные и относительные погрешности. Измерительные технологии.
- •29.(2) Простые машины (рычаг, блок, наклонная плоскость, клин). Строительные машины.
- •31.(2) Звуковые волны. Инфразвук, гиперзвук, ультразвук и его применение в технике и технолог иях.
- •32.(2) Использование достижений естесственных наук в приборостроении. Приборостроение.
- •Виды измерительных приборов:
- •33. (2) Сущность процесса измерения. Виды измерений. Роль измерений в науке, технике. Погрешности измерений, их виды, причины возникновения.
- •34.(2) Добывающая и перерабатывающая промышленность. Инновации в добывающей и перерабатывающей промышленности.
- •Прядение и технология прядильного производства (относится к текстильной промышленности)
- •37.(2) Формы движения материи. Потенциальная и кинетическая энергии, их природа и взаимопревращение.
22.(2) Квантовые эффекты в микромире. Виды спектров. Спектральный анализ и его применение в технике и технологиях.
Излучение и поглощение электромагнитных волн атомами вещества подчиняется квантовым законам. В частности, оптическое излучение возникает при квантовых переходах между уровнями энергии атомов, молекул, а также твердых и жидких тел. При этом излучение характеризуется определенным спектром – набором частот электромагнитных волн. Спектры испускания соответствуют квантовым переходам с верхних уровней энергии на нижние, спектры поглощения — с нижних на верхние. Спектральный состав излучения различных веществ весьма разнообразен. Тем не менее, все спектры можно разделить на три сильно отличающихся друг от друга типа. Непрерывные спектры. Это означает, что в спектре представлены волны всех длин. В спектре нет разрывов, и на экране спектрографа можно видеть сплошную разноцветную полосу. Непрерывные (или сплошные) спектры дают тела, находящиеся в твердом или жидком состоянии, а также сильно сжатые газы. Для получения непрерывного спектра нужно нагреть тело до высокой температуры. Характер непрерывного спектра и сам факт его существования определяются не только свойствами отдельных излучающих атомов, но и в сильной степени зависят от взаимодействия атомов друг с другом. Непрерывный спектр дает также высокотемпературная плазма. Электромагнитные волны излучаются плазмой в основном при столкновении электронов с ионами. Линейчатые спектры. Линейчатые спектры представляют собой набор цветных линий различной яркости, разделенных широкими темными полосами. Наличие линейчатого спектра означает, что вещество излучает свет только вполне определенных длин волн (точнее, в определенных очень узких спектральных интервалах). Каждая из линий имеет конечную ширину. Линейчатые спектры дают все вещества в газообразном атомарном (но не молекулярном) состоянии. Изолированные атомы химического элемента излучают строго определенные длины волн. Обычно для наблюдения линейчатых спектров используют свечение паров вещества в пламени или свечение газового разряда в трубке, наполненной исследуемым газом. При увеличении плотности атомарного газа отдельные спектральные линии расширяются и, при очень большой плотности газа, когда взаимодействие атомов становится существенным, эти линии перекрывают друг друга, образуя непрерывный спектр. Полосатые спектры. Полосатый спектр состоит из отдельных полос, разделенных темными промежутками. С помощью очень хорошего спектрального аппарата можно обнаружить, что каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий. В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом. Спектры поглощения. Все вещества, атомы которых находятся в возбужденном состоянии, излучают световые волны, энергия которых определенным образом распределена по длинам волн. Поглощение света веществом также зависит от длины волны Если пропускать белый свет сквозь холодный, неизлучающий газ, то на фоне непрерывного спектра источника появляются темные линии. Газ поглощает наиболее интенсивно свет как раз тех длин волн, которые он испускает в сильно нагретом состоянии. Темные линии на фоне непрерывного спектра - это линии поглощения, образующие в совокупности спектр поглощения.
Спектральный анализ — совокупность методов качественного и количественного определения состава объекта, основанная на изучении спектров взаимодействия материи с излучением, включая спектры электромагнитного излучения, акустических волн, распределения по массам и энергиям элементарных частиц и др. Спектральный анализ - способ определения химического состава вещества по его диапазону.
С помощью спектрального анализа можно найти данный элемент в составе сложного вещества. С его помощью были открыты многие новейшие элементы: рубидий, цезий и др. Спектральный анализ является главным способом контроля состава вещества в металлургии, машиностроении, атомной промышленности. С его помощью определяют химический состав руд и минералов. В криминалистике он отлично помогает определять орудие убийства и вообще раскрывать некие частности преступления. Еще шире спектральный анализ употребляют в медицине. Его можно употреблять для диагностирования, а также для того, чтоб определять инородные вещества в организме человека.