
- •Тема 1: основы
- •1.Организационный момент.
- •2.Основной материал:
- •1.Магнитное поле и его свойства:
- •II. Силовая характеристика магнитного
- •1) Для прямых токов
- •2) Для круговых токов:
- •III. Действие магнитного поля на проводник с током:
- •V. Применение закона Ампера:
- •1) Принцип действия электродвигателя:
- •2) Электроизмерительные приборы:
- •5. Закрепление пройденного материала:
- •7. Домашнее задание:
- •1.Организационный момент:
- •2. Проверка домашнего задания:
- •3.Основной материал:
- •1. Действие магнитного поля на движущийся электрический заряд:
- •2. Движение заряженных частиц в однородном магнитном поле:
- •3. Применение силы Лоренца:
- •4. Проявление силы Лоренца в природе:
- •4. Закрепление пройденного материала:
- •1. Организационный момент:
- •2. Проверка домашнего задания:
- •1). Магнитная проницаемость –
- •2). Три класса магнитных веществ:
- •3. Применение ферромагнетиков.
- •4. Закрепление пройденного материала:
- •1.Организационный момент:
- •2. Проверка домашнего задания:
- •3.Основной материал:
- •1. Опыты Фарадея:
- •2. Магнитный поток:
- •3.Явление электромагнитной индукции:
- •4. Правило Ленца:
- •5. Закон электромагнитной индукции:
- •6. Применение правила Ленца в законе электромагнитной индукции:
- •7. Вихревое электрическое поле:
- •8. Применение явления электромагнитной индукции:
- •I. Эдс индукции в движущемся проводнике.
- •II. Электродинамический микрофон.
- •III. Применение явления электромагнитной индукции:
- •1) Схема замыкания:
- •2) Схема размыкания:
- •2) Аналогия самоиндукции и инерции.
- •3) Индуктивность.
- •1.Организационный момент.
- •3.Основной материал:
- •III. Аналогия механических и электромагнитных колебаний:
- •I. Уравнение колебаний в контуре.
- •II. Аналогия уравнений механических и электромагнитных колебаний.
- •III. Гармонические колебания.
- •IV. Характеристики гармонических колебаний:
- •V. Гармонические колебания силы тока:
- •II. Активное сопротивление (r):
- •III. Мощность в цепи переменного тока с активным сопротивлением:
- •IV. Действующие значения силы тока и напряжения.
- •V. Емкостное сопротивление (хс):
- •VI. Индуктивное сопротивление (хl):
- •VII. Закон Ома для цепи переменного тока:
- •I. Резонанс в электрической цепи.
- •III. Работа генератора на транзисторе:
- •IV. Основные элементы автоколебательной системы:
- •2.Устройство и принцип действия индукционного генератора переменного
- •I. Подготовка к усвоению новой темы:
- •II. Основной материал:
- •2 . Работа нагруженного трансформатора:
- •3). Демонстрация работы трансформатора:
- •III. Закрепление пройденного материала:
- •1). Лабораторные исследования по фрагменту фильма:
- •IV. Подведение итогов урока:
- •Холостой ход трансформатора (без нагрузки):
- •2. Работа нагруженного трансформатора
- •Применение в источниках питания
- •Другие применения трансформатора
- •1.Организационный момент:
- •2. Проверка домашнего задания:
- •3.Основной материал:
- •1. Механизм распространения упругих
- •2. Виды волн:
- •4. Уравнение плоской волны:
- •7) Стоячие волны:
- •3. Характеристики волн:
- •3)Скорость распространения волны (V):
- •5. Энергия волны:
- •1) Условие максимума:
- •2) Условие минимума:
- •4. Закрепление пройденного материала:
- •1.Организационный момент:
- •2. Проверка домашнего задания:
- •3.Основной материал:
- •1.Звуковые волны:
- •2. Приемники звуковых волн:
- •3. Звуковые явления:
- •4. Физические характеристики звука:
- •3) Интенсивность звуковой волны
- •Электромагнитные волны распространяются в веществе с конечной скоростью
- •4. Электромагнитные волны переносят энергию.
- •6. Электромагнитные волны могут возбуждаться только ускоренно
- •Создать электромагнитные колебания высокой частоты;
- •Открыть колебательный контур.
- •I. Основы фотометрии:
- •1) Интерференция на тонких пленках (Гюйгенс)
- •2) Кольца Ньютона
- •1 Луч образовался при отражении света от выпуклой поверхности линзы;
- •I. Виды излучений:
- •II. Распределение энергии в спектре:
- •III. Спектральные аппараты.
- •Основы специальной теории относительности:
- •I. Принцип относительности и законы электродинамики:
- •II. Постулаты теории относительности
- •1. Принцип относительности
- •III. Относительность одновременности:
- •IV. Следствия из постулатов Эйнштейна: Основы специальной теории относительности:
- •1) Относительность промежутков времени:
- •2) Относительность расстояний
- •3) Релятивистский закон сложения скоростей (V ≈ c)
- •4) Зависимость массы от скорости
- •5) Основной закон релятивистской механики
- •5. Связь между массой и энергией:
- •I. Тепловое излучение тел:
- •II. "Ультрафиолетовая катастрофа":
- •1) Наблюдение фотоэффекта:
- •2) Изучение фотоэффекта:
- •2. Для каждого вещества существует так называемая красная граница фотоэффекта, т. Е. Наименьшая частота νmin , при которой еще возможен внешний фотоэффект.
- •3. Число фотоэлектронов, вырываемых светом из катода за 1 с, прямо пропорционально интенсивности света.
- •IV. Фотоны.
- •V. Корпускулярно-волновой дуализм:
- •VI. Применение фотоэффекта:
- •1. Вакуумные фотоэлементы:
- •2. Полупроводниковые фотоэлементы:
- •Физика атома и атомного ядра
- •I. Строение атома:
- •III. Модель атома водорода по Бору.
- •IV. Опыты Франка и Герца.
- •V. Лазеры
- •I. Методы регистрации заряженных частиц:
- •1) Сцинтилляционный счетчик
- •2) Счетчик Гейгера:
- •II. Открытие радиоактивности
- •III. Закон радиоактивного распада.
- •I. Открытие протона:
- •II. Открытие нейтрона:
- •III. Строение атома:
- •IV. Особенности взаимодействия нуклонов:
- •V. Энергия связи атомных ядер:
- •1. Механизм деления ядра урана:
- •2. Цепная ядерная реакции:
- •В атомных бомбах цепная неуправляемая ядерная реакция возникает при быстром соединении двух кусков , каждый из которых имеет массу несколько ниже критической.
- •Предпосылки
- •Принцип действия
- •I. Тепловое излучение тел:
- •II. "Ультрафиолетовая катастрофа":
- •1) Наблюдение фотоэффекта:
- •2) Изучение фотоэффекта:
- •2. Для каждого вещества существует так называемая красная граница фотоэффекта, т. Е. Наименьшая частота νmin, при которой еще возможен внешний фотоэффект.
- •3. Число фотоэлектронов, вырываемых светом из катода за 1 с, прямо пропорционально интенсивности света.
- •IV. Фотоны.
- •V. Корпускулярно-волновой дуализм:
- •VI. Применение фотоэффекта:
- •1. Вакуумные фотоэлементы:
- •2. Полупроводниковые фотоэлементы:
- •Физика атома и атомного ядра
- •I. Строение атома:
- •1. Электронная модель - Модель Лоренца:
- •III. Модель атома водорода по Бору.
- •IV. Опыты Франка и Герца.
- •V. Лазеры
- •Физика атома и атомного ядра
- •I. Строение атома:
- •III. Модель атома водорода по Бору.
- •IV. Опыты Франка и Герца.
IV. Опыты Франка и Герца.
Успехи теории Бора в объяснении спектральных закономерностей в изучении атома водорода были поразительны. Стало ясно, что атомы – это квантовые системы. Энергетические уровни стационарных состояний атомов дискретны. Почти одновременно с созданием теории Бора было получено прямое экспериментальное доказательство существования стационарных состояний атома и квантования энергии. Дискретность энергетических состояний атома была продемонстрирована в опыте Д. Франка и Г. Герца (1913 г.), в котором исследовалось столкновение электронов с атомами ртути.
И
сточник
1 ускоряет электроны, испускаемые с
поверхности катода за счет термоэлектронной
эмиссии.
Источник 2 создает слабое электрическое поле, тормозит медленные электроны за счет "+" потенциала сетки.
Пары ртути поглощают энергию электронов определенным порциями => ЕК электронов уменьшается и они оседают на сетке – ток падает.
О
казалось,
что если энергия электронов меньше
4,9 эВ, то их столкновение с атомами
ртути происходит по закону абсолютно
упругого удара. Если же энергия электронов
равна 4,9 эВ, то столкновение с атомами
ртути приобретает характер неупругого
удара, т. е. в результате столкновения
с неподвижными атомами ртути электроны
полностью теряют свою
кинетическую энергию.
Это означает, то атомы ртути поглощают энергию электрона и переходят из основного состояния в первое возбужденное состояние, E2 – E1 = 4,9 эВ.
∆UПАРОВ РТУТИ = 4,9 эВ – энергия излучения.
Согласно боровской концепции, при обратном самопроизвольном переходе атома ртуть должна испускать кванты с частотой
Спектральная линия с такой частотой действительно была обнаружена в ультрафиолетовой части спектра в излучении атомов ртути.
Представление о дискретных состояниях противоречит классической физике. Поэтому возник вопрос, не опровергает ли квантовая теория законы классической физики. Квантовая физика не отменила фундаментальных классических законов сохранения энергии, импульса, электрического разряда и т. д. Согласно сформулированному Н. Бором принципу соответствия, квантовая физика включает в себя законы классической физики, и при определенных условиях можно обнаружить плавный переход от квантовых представлений к классическим. Это можно видеть на примере энергетического спектра атома водорода. При больших квантовых числах n >> 1 дискретные уровни постепенно сближаются, и возникает плавный переход в область непрерывного спектра, характерного для классической физики.
Половинчатая, полуклассическая теория Бора явилась важным этапом в развитии квантовых представлений, введение которых в физику требовало кардинальной перестройки механики и электродинамики. Такая перестройка была осуществлена в 20-е – 30-е годы XX века.
П
редставление
Бора об определенных орбитах, по которым
движутся электроны в атоме, оказалось
весьма условным. На самом деле движение
электрона в атоме очень мало похоже на
движение планет или спутников.
Физический смысл имеет только вероятность обнаружить электрон в том или ином месте. Атом водорода можно представить в виде сферически симметричного электронного облака, в центре которого находится ядро.
Квантование электронных орбит.