
- •Тема 1: основы
- •1.Организационный момент.
- •2.Основной материал:
- •1.Магнитное поле и его свойства:
- •II. Силовая характеристика магнитного
- •1) Для прямых токов
- •2) Для круговых токов:
- •III. Действие магнитного поля на проводник с током:
- •V. Применение закона Ампера:
- •1) Принцип действия электродвигателя:
- •2) Электроизмерительные приборы:
- •5. Закрепление пройденного материала:
- •7. Домашнее задание:
- •1.Организационный момент:
- •2. Проверка домашнего задания:
- •3.Основной материал:
- •1. Действие магнитного поля на движущийся электрический заряд:
- •2. Движение заряженных частиц в однородном магнитном поле:
- •3. Применение силы Лоренца:
- •4. Проявление силы Лоренца в природе:
- •4. Закрепление пройденного материала:
- •1. Организационный момент:
- •2. Проверка домашнего задания:
- •1). Магнитная проницаемость –
- •2). Три класса магнитных веществ:
- •3. Применение ферромагнетиков.
- •4. Закрепление пройденного материала:
- •1.Организационный момент:
- •2. Проверка домашнего задания:
- •3.Основной материал:
- •1. Опыты Фарадея:
- •2. Магнитный поток:
- •3.Явление электромагнитной индукции:
- •4. Правило Ленца:
- •5. Закон электромагнитной индукции:
- •6. Применение правила Ленца в законе электромагнитной индукции:
- •7. Вихревое электрическое поле:
- •8. Применение явления электромагнитной индукции:
- •I. Эдс индукции в движущемся проводнике.
- •II. Электродинамический микрофон.
- •III. Применение явления электромагнитной индукции:
- •1) Схема замыкания:
- •2) Схема размыкания:
- •2) Аналогия самоиндукции и инерции.
- •3) Индуктивность.
- •1.Организационный момент.
- •3.Основной материал:
- •III. Аналогия механических и электромагнитных колебаний:
- •I. Уравнение колебаний в контуре.
- •II. Аналогия уравнений механических и электромагнитных колебаний.
- •III. Гармонические колебания.
- •IV. Характеристики гармонических колебаний:
- •V. Гармонические колебания силы тока:
- •II. Активное сопротивление (r):
- •III. Мощность в цепи переменного тока с активным сопротивлением:
- •IV. Действующие значения силы тока и напряжения.
- •V. Емкостное сопротивление (хс):
- •VI. Индуктивное сопротивление (хl):
- •VII. Закон Ома для цепи переменного тока:
- •I. Резонанс в электрической цепи.
- •III. Работа генератора на транзисторе:
- •IV. Основные элементы автоколебательной системы:
- •2.Устройство и принцип действия индукционного генератора переменного
- •I. Подготовка к усвоению новой темы:
- •II. Основной материал:
- •2 . Работа нагруженного трансформатора:
- •3). Демонстрация работы трансформатора:
- •III. Закрепление пройденного материала:
- •1). Лабораторные исследования по фрагменту фильма:
- •IV. Подведение итогов урока:
- •Холостой ход трансформатора (без нагрузки):
- •2. Работа нагруженного трансформатора
- •Применение в источниках питания
- •Другие применения трансформатора
- •1.Организационный момент:
- •2. Проверка домашнего задания:
- •3.Основной материал:
- •1. Механизм распространения упругих
- •2. Виды волн:
- •4. Уравнение плоской волны:
- •7) Стоячие волны:
- •3. Характеристики волн:
- •3)Скорость распространения волны (V):
- •5. Энергия волны:
- •1) Условие максимума:
- •2) Условие минимума:
- •4. Закрепление пройденного материала:
- •1.Организационный момент:
- •2. Проверка домашнего задания:
- •3.Основной материал:
- •1.Звуковые волны:
- •2. Приемники звуковых волн:
- •3. Звуковые явления:
- •4. Физические характеристики звука:
- •3) Интенсивность звуковой волны
- •Электромагнитные волны распространяются в веществе с конечной скоростью
- •4. Электромагнитные волны переносят энергию.
- •6. Электромагнитные волны могут возбуждаться только ускоренно
- •Создать электромагнитные колебания высокой частоты;
- •Открыть колебательный контур.
- •I. Основы фотометрии:
- •1) Интерференция на тонких пленках (Гюйгенс)
- •2) Кольца Ньютона
- •1 Луч образовался при отражении света от выпуклой поверхности линзы;
- •I. Виды излучений:
- •II. Распределение энергии в спектре:
- •III. Спектральные аппараты.
- •Основы специальной теории относительности:
- •I. Принцип относительности и законы электродинамики:
- •II. Постулаты теории относительности
- •1. Принцип относительности
- •III. Относительность одновременности:
- •IV. Следствия из постулатов Эйнштейна: Основы специальной теории относительности:
- •1) Относительность промежутков времени:
- •2) Относительность расстояний
- •3) Релятивистский закон сложения скоростей (V ≈ c)
- •4) Зависимость массы от скорости
- •5) Основной закон релятивистской механики
- •5. Связь между массой и энергией:
- •I. Тепловое излучение тел:
- •II. "Ультрафиолетовая катастрофа":
- •1) Наблюдение фотоэффекта:
- •2) Изучение фотоэффекта:
- •2. Для каждого вещества существует так называемая красная граница фотоэффекта, т. Е. Наименьшая частота νmin , при которой еще возможен внешний фотоэффект.
- •3. Число фотоэлектронов, вырываемых светом из катода за 1 с, прямо пропорционально интенсивности света.
- •IV. Фотоны.
- •V. Корпускулярно-волновой дуализм:
- •VI. Применение фотоэффекта:
- •1. Вакуумные фотоэлементы:
- •2. Полупроводниковые фотоэлементы:
- •Физика атома и атомного ядра
- •I. Строение атома:
- •III. Модель атома водорода по Бору.
- •IV. Опыты Франка и Герца.
- •V. Лазеры
- •I. Методы регистрации заряженных частиц:
- •1) Сцинтилляционный счетчик
- •2) Счетчик Гейгера:
- •II. Открытие радиоактивности
- •III. Закон радиоактивного распада.
- •I. Открытие протона:
- •II. Открытие нейтрона:
- •III. Строение атома:
- •IV. Особенности взаимодействия нуклонов:
- •V. Энергия связи атомных ядер:
- •1. Механизм деления ядра урана:
- •2. Цепная ядерная реакции:
- •В атомных бомбах цепная неуправляемая ядерная реакция возникает при быстром соединении двух кусков , каждый из которых имеет массу несколько ниже критической.
- •Предпосылки
- •Принцип действия
- •I. Тепловое излучение тел:
- •II. "Ультрафиолетовая катастрофа":
- •1) Наблюдение фотоэффекта:
- •2) Изучение фотоэффекта:
- •2. Для каждого вещества существует так называемая красная граница фотоэффекта, т. Е. Наименьшая частота νmin, при которой еще возможен внешний фотоэффект.
- •3. Число фотоэлектронов, вырываемых светом из катода за 1 с, прямо пропорционально интенсивности света.
- •IV. Фотоны.
- •V. Корпускулярно-волновой дуализм:
- •VI. Применение фотоэффекта:
- •1. Вакуумные фотоэлементы:
- •2. Полупроводниковые фотоэлементы:
- •Физика атома и атомного ядра
- •I. Строение атома:
- •1. Электронная модель - Модель Лоренца:
- •III. Модель атома водорода по Бору.
- •IV. Опыты Франка и Герца.
- •V. Лазеры
- •Физика атома и атомного ядра
- •I. Строение атома:
- •III. Модель атома водорода по Бору.
- •IV. Опыты Франка и Герца.
II. "Ультрафиолетовая катастрофа":
Безупречный с точки зрения классической физики вывод приводит к формуле, которая находится в резком противоречии с опытом. Стало ясно, что решить задачу о спектральном распределении излучения абсолютно черного тела в рамках существующих теорий невозможно. Эта задача была успешно решена М. Планком на основе новой идеи, чуждой классической физике.
Элементарный диполь (вибратор) Герца совершающий гармонические колебания –электромагнитный осциллятор предложил немецкий физик Макс Планк, как простую модель, способную излучать и поглощать электромагнитные волны.
Из МКТ =>, что в
состоянии теплового равновесия
,
где k – постоянная Больцмана; Т – абсолютная температура.
Излучаемая осциллятором в единицу времени электромагнитная энергия пропорциональна средней энергии осциллятора kT. И т.к. число осцилляторов со всевозможными значениями частот колебаний должно быть бесконечно велико, то излучаемая ими энергия должна быть бесконечно большой. Этот вывод совершенно бессмысленен, т.к. он отрицает возможность теплового равновесия между веществом и излучением. Тело при любой температуре должно излучать и терять энергию до тех пор, пока его температура не снизится до абсолютного нуля.
Однако повседневный опыт показывает, что ничего подобного в действительности нет: вещество не расходует всю свою энергию на излучение электромагнитных волн. Т.к. общая энергия излучения получается бесконечно большой из-за того, что излучаются все частоты вплоть до сколь угодно высоких, то сложившаяся противоречивая ситуация получила название "ультрафиолетовя катастрофа"
Планк пришел к выводу, что процессы излучения и поглощения нагретым телом электромагнитной энергии, происходят не непрерывно, как это принимала классическая физика, а конечными порциями – квантами.
В 1918 году Планк получил Нобелевскую премию за введение понятия кванта и объяснение спектра излучения абсолютно черного тела.
Квант – это минимальная порция энергии, излучаемой или поглощаемой телом.
По теории Планка: E = hν – 2-ая "великая формула" Планка - энергия кванта E прямо пропорциональна частоте света ν.
где h = 6,626·10–34 Дж·с – постоянная Планка.
Постоянная Планка – это универсальная константа, которая в квантовой физике играет ту же роль, что и скорость света в СТО.
На основе гипотезы о прерывистом характере процессов излучения и поглощения телами электромагнитного излучения Планк получил формулу для спектральной светимости абсолютно черного тела. Формулу Планка удобно записывать в форме, выражающей распределение энергии в спектре излучения абсолютно черного тела по частотам ν, а не по длинам волн λ.
Здесь c – скорость света, h – постоянная Планка, k – постоянная Больцмана, T – абсолютная температура.
Формула Планка хорошо описывает спектральное распределение излучения черного тела при любых частотах. Она прекрасно согласуется с экспериментальными данными.
Из формулы Планка можно вывести законы Стефана–Больцмана и Вина.
При hν << kT формула Планка переходит в формулу Релея–Джинса.
Решение проблемы излучения черного тела ознаменовало начало новой эры в физике. Нелегко было примириться с отказом от классических представлений, и сам Планк, совершив великое открытие, в течение нескольких лет безуспешно пытался понять квантование энергии с позиции классической физики.
III. Фотоэффект (световое действие) – это выравнивание электронов из металла под
действием света.
Фотоэлектрический эффект был открыт в 1887 году немецким физиком Г. Герцем и в 1888–1890 годах экспериментально исследован А. Г. Столетовым. Наиболее полное исследование явления фотоэффекта было выполнено Ф. Ленардом в 1900 г. К этому времени уже был открыт электрон (Д. Томсон, 1897 г.), и стало ясно, что фотоэффект (или точнее – внешний фотоэффект) состоит в вырывании электронов из вещества под действием падающего на него света.
В 1888 году фотоэффект объяснил
А. Эйнштейн.