Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы к билетам по физике.doc
Скачиваний:
18
Добавлен:
31.07.2019
Размер:
2.23 Mб
Скачать

8.Взаимодействие рентгеновского и гамма излучения с веществом происходят посредством трех основных процессов: фотоэлектрического поглощения (фотоэффекта), рассеяния и эффекта образования пар.

 

 При фотоэффекте рентгеновский или гамма-квант передает всю энергию электрону атома. При этом, если электрон получает энергию, большую, чем энергия связи его в атоме, то он вылетает из атома. Этот электрон называется фотоэлектроном. При потере атомами фотоэлектронов освободившиеся места в электронных оболочках в дальнейшем заполняются электронами с внешних оболочек. Переход электронов на более близкую к ядру оболочку сопровождается испусканием кванта характеристического излучения, которое можно зарегистрировать, например, фотоэмульсией.

 США патент 3 580 745: Способ и устройство для маркировки банок в контейнере путем облучения чувствительной эмульсией. Перед упаковкой в транспортировочный картонный контейнер торец каждой банки покрывают чувствительной к облучению эмульсией. Банки, упакованные в контейнер облучают рентгеновскими или гамма-лучами. При этом, покрытие эмульсией торцы банок облучаются через экран с прорезями, имеющими форму маркировочных обозначений (например цены). Таким образом, маркировка упакованных в картонный контейнер банок осуществляется без вскрытия этого контейнера и последующей индивидуальной маркировки каждой банки.

 При малых энергиях квантов (Е 0,5 Мэв) фотоэлектроны вылетают преимущественно в направлениях, перпендикулярных направлению распространения излучения. Чем выше энергия квантов, тем ближе к их первоначальному направлению движение выбрасываемых фотоэлектронов. Процесс образования фотоэлектронов приводит к ионизации облучаемого вещества, что находит большее применение для интенсификации различных технологических процессов.

 А.с. 241 010: Способ получения поликарбонилфторида полимеризацией тиокарбонилфторида, отличающийся тем, что с целью упрощения процесса и получения более чистого полимера, полимеризацию осуществляют под действием гамма излучения Со 60.

 А.с. 375 295: Способ получения алкилгалогенидов германия взаимодействием четырехгалоидного германия с триалкалгерманием при нагревании, отличающийся тем, что с целью увеличения выхода и чистоты целевого продукта, процесс ведут пригамма облучении.

18.3.2. Рассеяние рентгеновского и гамма излучения.

 Различают два основных процесса рассеяния: комптоновское или кекогерентное (Комптон эффект) и корентное рассеяние.

 При Комптон-эффекте происходит упругое соударение первичного кванта со свободным электроном вещества. комптоновское рассеяние представляет собой взаимодействие кванта с электроном, при котором, в отличии от фотоэффекта, квант передает электрону не всю энергию, а только ее часть, отклоняясь при этом от своего первоначального направления в некоторый угол а электрон, получивший некоторое количество энергии, начинает двигаться под углом к направлению движения рентгеновского или гамма-кванта. В результате Комптон-эффекта появляется рассеянный квант большей длиной волны, изменившей первоначальное направление, и электрон отдачи (комптоновский электрон), получивший часть энергии кванта. Комптоновские электроны характеризуются непрерывным спектром от ничтожно малых значений до максимальной величины (если они выбрасываются в направлении движения кванта).

 18.3.3. В случае, если энергия кванта сравнима с энергией связи электрона в атоме, происходит когерентное рассеяние квантов. При этом, когда электромагнитная волна встречается с электроном, последний начинает колебаться с частотой этой волны и излучает: энергию в виде рассеянной волны. Энергия кванта при этом не изменяется. Движение электронов в атоме взаимосвязано, поэтому излучение, рассеянное одним электроном, будет интерферировать с излучением, рассеянным другими электронами этого же атома. Рассеянные гамма кванты несут информацию о структуре облучаемого вещества, поэтому рассеянное излучение можно использовать для различных измерительных целей.

 А.с. 120 675: Способ определения угла смачивания и поверхностного или межфазового натяжения непрозрачных систем при высоких температурах фотографирование контура, которое осуществляется в пучках мягких гамма лучей полученных от радиоактивных изотопов, например иридия 192, тулия 170 или европия 154 или 156.

 18.3.4. Эффект образования пар.

 При взаимодействии с атомами ядра кванты рентгеновского и гамма излучения достаточно высокой энергии (не менее 1,02 Мэв) вызывают одновременное появление электронов и позитронов. Процесс образования электронно-позитронных пар происходит в поле атомного ядра или поле электрона. Позитрон существует лишь очень короткий промежуток времени; вслед за образованием пары наблюдается явление аннигиляции - исчезновение позитрона и какого либо электрона среды, сопровождаемое излучением двух квантов с энергией 0,51 Мэв.

9.Экспозиционная доза

Основная характеристика взаимодействия ионизирующего излучения и среды — это ионизационный эффект. В начальный период развития радиационной дозиметрии чаще всего приходилось иметь дело с рентгеновским излучением, распространявшимся в воздухе. Поэтому в качестве количественной меры поля излучения использовалась степень ионизации воздуха рентгеновских трубок или аппаратов. Количественная мера, основанная на величине ионизации сухого воздуха при нормальном атмосферном давлении, достаточно легко поддающаяся измерению, получила название экспозиционная доза.

Экспозиционная доза определяет ионизирующую способность рентгеновских и гамма-лучей и выражает энергию излучения, преобразованную в кинетическую энергиюзаряженных частиц в единице массы атмосферного воздуха. Экспозиционная доза — это отношение суммарного заряда всех ионов одного знака в элементарном объёмевоздуха к массе воздуха в этом объёме.

В системе СИ единицей измерения экспозиционной дозы является кулон, деленный на килограмм (Кл/кг). Внесистемная единица — рентген (Р). 1 Кл/кг = 3876 Р.

Эквивалентная доза

Изучение отдельных последствий облучения живых тканей показало, что при одинаковых поглощенных дозах различные виды радиации производят неодинаковое биологическое воздействие на организм. Обусловлено это тем, что более тяжелая частица (например, протон) производит на единице пути в ткани больше ионов, чем легкая (например, электрон). При одной и той же поглощенной дозе радиобиологический разрушительный эффект тем выше, чем плотнее ионизация, создаваемая излучением. Чтобы учесть этот эффект, введено понятие эквивалентной дозы. Эквивалентная доза рассчитывается путем умножения значения поглощенной дозы на специальныйкоэффициент — коэффициент относительной биологической эффективности (ОБЭ) или коэффициент качества.

Коэффициент относительной биологической эффективности для различных видов излучений

Вид излучения

Коэффициент , Зв/Гр

Рентгеновское и γ-излучение

1

β-излучение(электроны, позитроны)

1

Нейтроны с энергией меньше 20 кэВ

3

Нейтроны с энергией 0,1-10 МэВ

10

Протоны с энергией меньше 10 МэВ

10

α-излучение с энергией меньше 10 МэВ

20

Тяжелые ядра отдачи

20

Единицей измерения эквивалентной дозы в СИ является зиверт (Зв). Величина 1 Зв равна эквивалентной дозе любого вида излучения, поглощенной в 1 кг биологической ткани и создающей такой же биологический эффект, как и поглощенная доза в 1 Гр фотонного излучения. Внесистемной единицей измерения эквивалентной дозы является бэр(до 1963 года - биологический эквивалент рентгена, после 1963 года - биологический эквивалент рада - Энциклопедический словарь). 1 Зв = 100 бэр.

Насколько опасны радиоактивные излучения?

Альфа-излучение

Альфа-излучение представляет собой поток альфа-частиц, распространяющихся с начальной скоростью около 20 тыс. км/с. Их ионизирующая способность огромна, а так как на каждый акт ионизации тратится определенная энергия, то их проникающая способность незначительна (длина пробега в воздухе составляет 3—11 см, а в жидких и твердых средах — сотые доли миллиметра).

Защита организма от радиоактивного альфа-излучения

Полностью задерживается листом плотной бумаги.

Не менее надежной защитой от альфа-частиц является одежда человека.

Поскольку альфа-излучение имеет наибольшую ионизирующую, но наименьшую проникающую способность, внешнее облучение альфа-частицами практически безвредно, но попадание их внутрь организма весьма опасно.

Бета-излучение

Бета-излучение — поток бета-частиц, которые в зависимости от энергии излучения могут распространяться со скоростью, близкой к скорости света (300 тыс. км/с). Заряд бета-частиц меньше, а скорость больше, чем у альфа-частиц, поэтому они имеют меньшую ионизирующую, но большую проникающую способность. Длина пробега бета-частиц с высокой энергией составляет в воздухе до 20 м, воде и живых тканях — до 3 см, металле — до 1 см.

Защита организма от радиоактивного бета-излучения

Бета-частицы почти полностью поглощают оконные или автомобильные стекла и металлические экраны толщиной в несколько миллиметров.

Одежда поглощает до 50 % бета-частиц.

При внешнем облучении организма на глубину около 1 мм проникает 20—25 % бета-частиц, поэтому внешнее бета-облучение представляет серьезную опасность лишь при попадании радиоактивных веществ непосредственно на кожу (особенно на глаза) или же внутрь организма.

Нейтронное излучение

Нейтронное излучение — представляет собой поток нейтронов, скорость распространения которых достигает 20 тыс. км/с. Так как нейтроны не имеют электрического заряда, они легко проникают в ядра атомов и захватываются ими. При ядерном взрыве большая часть нейтронов выделяется за короткий промежуток времени. Они легко проникают в живую ткань и захватываются ядрами ее атомов. Поэтому нейтронное излучение оказывает сильное поражающее действие при внешнем облучении.

Защита организма от нейтронного излучения

Лучшими защитными материалами от нейтронного излучения являются легкие водородсодержащие материалы:

Обычная полиэтиленовая пленка;

Парафин;

Вода и др.

Гамма-излучение

Гамма-излучение — это электромагнитное излучение, испускаемое ядрами атомов при радиоактивных превращениях. Оно, как правило, сопровождает бета-распад, реже альфа-распад. По своей природе гамма-излучение представляет собой электромагнитное поле с длиной волны менее 2x10~8 см. Оно испускается отдельными порциями (квантами) и распространяется со скоростью света. Ионизирующая способность его значительно меньше, чем у бета-частиц и тем более у альфа-частиц. Зато гамма-излучение имеет наибольшую проникающую способность и в воздухе может распространяться на сотни метров. Из-за наибольшей проникающей способности гамма-излучение является важнейшим фактором поражающего действия радиоактивных излучений при внешнем облучении.

Защита организма от радиоактивного гамма-излучения

Для ослабления его энергии в два раза необходим слой вещества (слой половинного ослабления) толщиной:

Воды — 23 см;

Стали — около 3 см;

бетона — 10 см;

дерева — 30 см.

Хорошей защитой от гамма-излучений являются тяжелые металлы, например свинец.

Рентгеновские излучения

Рентгеновские излучения (икс-лучи) были открыты первыми из всех ионизирующих излучений и наиболее хорошо изучены. У них та же физическая природа (электромагнитное поле) и те же свойства, что и у гамма-излучений. Их различают прежде всего по способу получения, и в отличие от гамма-лучей они имеют внеядерное происхождение. Излучениеполучают в специальных вакуумных рентгеновских трубках при торможении (ударе о специальную мишень) быстро летящих электронов.  Энергия квантов рентгеновских лучей несколько меньше, чем гамма-излучениябольшинства радиоактивных изотопов, соответственно, несколько ниже их проникающая способность. Однако это второстепенные различия. Поэтому рентгеновские лучи широко используют вместо гамма-излучения, в частности для экспериментального облучения животных, семян растений и т. п. С этой целью применяют рентгеновские установки для облучения (просвечивания) людей.

Защита организма от рентгеновского излучения

Лучшими защитными материалами от рентгеновских лучей так же являются тяжелые металлы и в частности свинец.

Важно:

Повреждений, вызванных в живом организме ионизирующим излучением, будет тем больше, чем больше энергии оно передает тканям.

Дозы облучения

Количество энергии излучения, поглощенное единицей массы облучаемого организма, называется поглощенной дозой и измеряется в системе СИ в Грэях (Гр).

1 Гр = 1 Джоуль / кг.

Эта величина не учитывает эффективности воздействия определенного вида излучения на организм, поэтому на практике используется эквивалентная доза, равная поглощенной дозе, умноженной на коэффициент качества излучения. Например, для гамма-излучения коэффициент качества порядка единицы, а для альфа-излучения он в 20 раз больше, т.е. альфа-излучение в 20 раз опаснее гамма-излучения.

В системе СИ эквивалентная доза измеряется в Зивертах (Зв, Sv)

Естественный радиационный фон

ЕСТЕСТВЕННЫЙ РАДИАЦИОННЫЙ ФОН — космическое излучение и излучение, создаваемое природнымирадионуклидами, содержащимися в земле, воде, воздухе, др. элементах биосферы, в пищевых продуктах, в организме человека и животных.

10.Детектор элементарных частиц, детектор ионизирующего излучения в экспериментальной физике элементарных частиц — устройство, предназначенное для обнаружения и измерения параметровэлементарных частиц высокой энергии, таких как космические лучи или частиц, рождающихся при ядерных распадах или в ускорителях.

Устаревшие

Пузырьковая камера

Камера Вильсона

Детекторы для радиационной защиты

Детекторы для ядерной физики и физики элементарных частиц

Калориметр

Время-пролетный счетчик

Детектор черенковского излучения

RICH

Детектор переходного излучения

Сцинтилляционный счетчик

Полупроводниковый детектор

Газовый ионизационный детектор

Ионизационная камера

Пропорциональная камера

Счетчик Гейгера-Мюллера

Стримерная камера

Времяпроекционная камера

Микростриповая камера