Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Num_Mat_E (2).doc
Скачиваний:
6
Добавлен:
11.07.2019
Размер:
1.69 Mб
Скачать

Контрольные задания

Получить решение задачи Коши на указанном отрезке с использованием ме­тода из числа рассматриваемых в лабораторной работе. Оценить относительную погрешность полученного решения.

1. .

2. .

3. .

4. .

5. .

6. .

7. .

8. .

9. .

10. .

11. .

12. .

13. .

14. .

15. .

16. .

17. .

18. .

19. .

20. .

21. .

22. .

23. .

24. .

25. .

26. .

27. .

28. .

29. .

30. .

7. Решение задачи коши для нормальных систем обыкновенных дифференциальных уравнений и уравнений высших порядков Справочная информация

Задача Коши для нормальной системы обыкновенных дифференциальных уравнений записывается в виде

или в матричной форме

, ,

где

, , .

Система дифференциальных уравнений связывает независимую переменную x, искомые функции y1, y2,..., yn и их первые производные. В данном случае решение задачи Коши заключается в отыскании функций y1 = y1(x), y2 = y2(x),..., yn = yn(x), обращающих каждое уравнение системы в тождество на конечном или бесконечном интервале (a, b) и удовлетворяющих начальным условиям.

Такая форма записи задачи Коши является канонической для систем обыкновенных дифференциальных уравнений. К ней могут быть приведены как любые другие формы представления систем дифференциальных уравнений, разрешённых относительно старших производных, так и дифференциальные уравнения высших порядков. Приведение дифференциальных уравнений высших порядков к нормальной системе дифференциальных уравнений осуществляется по следующей схеме. Если дана задача Коши следующего вида

,

,

то замена переменных

сводит её к нормальной системе дифференциальных уравнений с начальными условиями

образующих задачу Коши.

Для решения такой задачи Коши используются те же методы, что для обыкновенных дифференциальных уравнений 1-го порядка. Это обуславливается тем, что матричная форма записи задачи Коши для нормальной системы полностью совпадает с её формулировкой для этих уравнений. Аналогична для неё и теорема о существовании единственного решения. Единственным отличием здесь является то, что вместо функций y(x) и f(x, y) используются вектор-функции y и f, которые состоят из n функций y1(x), y2(x),..., yn(x) и f1(x, y1,..., yn), f2(x, y1,..., yn),..., fn(x, y1,..., yn), соответственно. При этом расчётные схемы методов и оценки их погрешностей сохраняются.

Метод Эйлера

Соотношения метода Эйлера для нормальной системы в матричной форме имеют вид

,

или в развёрнутой форме

,

где верхний индекс показывает номер шага по аргументу x.

Геометрическая интерпретация работы метода Эйлера решения задачи Коши для нормальной системы идентична его геометрической интерпретации для дифференциальных уравнений 1-го порядка. Однако в данном случае движение осуществляется вдоль некоторой кривой в (n + 1)-мерном пространстве переменных x, y1, y2,..., yn, которая является геометрическим представлением вектор-функции y.

Оценка погрешности метода

Все оценки погрешности, полученные для решений задачи Коши для одного дифференциального уравнения 1-го порядка, остаются справедливыми и для решения систем аналогичных дифференциальных уравнений. В силу этого абсолютная погрешность метода Эйлера на каждом шаге пропорциональна величине h2

.

Здесь

,

где

.

При вычислении коэффициента Ck+1 в качестве вектор-функции используется некая промежуточная функция, кривая которой в (n+1)-мерном пространстве переменных x, y1, y2,..., yn, располагается между кривыми приближённого и неизвестного точного решений.

Абсолютная погрешность вычисления приближённого решения на отрезке интегрирования системы дифференциальных уравнений после n-го шага оценивается следующим образом

,

где m = 2 для метода Эйлера и

.

На практике такое вычисление абсолютных погрешностей решения задачи Коши затруднено. Поэтому, как правило, для вычисления погрешности методов используют апостериорную оценку, базирующуюся на правиле Рунге

,

где y(xk, h) и y(xk, 2h) – приближённые значения вектора решения, вычисленные в точке xk при шагах интегрирования, отличающихся друг от друга в два раза.

В качестве относительной погрешности решения задачи Коши на отрезке [x0, xn], как и в случае одного дифференциального уравнения 1-го порядка, используют интервальную оценку

.

Алгоритм метода Эйлера решения задачи Коши и оценка погрешности получаемых результатов может быть проиллюстрирован на примере решения уравнения с начальными условиями y(0) = 0, на отрезке [0, 0.4] с шагом h = 0.1.

На первом этапе дифференциальное уравнение 2-го порядка должно быть преобразовано к эквивалентной системе дифференциальных уравнений 1-го порядка. Для этого вводятся следующие обозначения

,

что позволяет записать исходную задачу Коши в виде системы

В соответствии с алгоритмом метода Эйлера рас­чётная схема решения системы дифференциальных уравнений может быть представлена в виде следующих соотношений

,

Таким образом, процесс решения с заданным шагом интегрирования h = 0.1 будет выглядеть следующим образом

Для получения оценки погрешности решения необходимо повторить про­деланные расчёты с удвоенным шагом h = 0.2

Эти результаты позволяют оценить абсолютную и относительную погрешности решения с шагом интегрирования h = 0.1

,

,

,

,

,

, ,

,

,

, .

Возможный вариант реализации метода Эйлера в программе Excel представлен на рис.1. Здесь решена задача Коши, подобная рассмотренной выше. Отличие состоит в том, что отрезок построения решения увеличен до отрезка [0, 2]. Сравнение решений с шагами h = 0.1 и h = 0.05 позволяет оценить погрешность последнего.

Рис.1.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]