Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
матан.doc
Скачиваний:
2
Добавлен:
29.04.2019
Размер:
1.04 Mб
Скачать

1. Случайным (стохастическим) экспериментом или испытанием называется осуществление какого-либо комплекса условий, который можно практически или мысленно воспроизвести сколь угодно большое число раз.

О. Явления, происходящие при реализации этого комплекса условий, то есть в результате случайного эксперимента, называются элементарными исходами. Считается, что при проведении случайного эксперимента реализуется только один из возможных элементарных исходов.

О. Множество всех элементарных исходов случайного эксперимента называется пространством элементарных исходов 

Если пространство элементарных исходов содержит n элементарных исходов, то

Множество называется счетным, если между ним и множеством N натуральных чисел можно установить взаимно-однозначное соответствие.

 

Говорят, что те исходы, из которых состоит событие А, благоприятствуют событию А.

Приведем пример объединения событий. Пусть два стрелка стреляют в мишень одновременно, и событие А состоит в том, что в мишень попадает 1-й стрелок, а событие B - в том, что в мишень попадает 2-й. Событие AUB означает, что мишень поражена, или, иначе, что в мишень попал хотя бы один из стрелков.

В условиях рассмотренного выше примера событие А\B заключается в том, что первый стрелок попал в мишень, а второй промахнулся.

2.

Вероятность - одно из основных понятий теории вероятностей. Существует несколько определений этого понятия. Приведем определение, которое называют классическим. Далее укажем слабые стороны этого определения и приведем другие определения, позволяющие преодолеть недостатки классического определения.

Рассмотрим пример. Пусть в урне содержится 6 одинаковых, тщательно перемешанных шаров, причем 2 из них - красные, 3 - синие и 1 - белый. Очевидно, возможность вынуть наудачу из урны цветной (т. е. красный или синий) шар больше, чем возможность извлечь белый шар. Можно ли охарактеризовать эту возможность числом? Оказывается, можно. Это число и называют вероятностью события (появления цветного шара). Таким образом, вероятность есть число, характеризующее степень возможности появления события.

Поставим перед собой задачу дать количественную оценку возможности того, что взятый наудачу шар цветной. Появление цветного шара будем рассматривать в качестве события А. Каждый из возможных результатов испытания (испытание состоит в извлечении шара из урны) назовемэлементарным исходом (элементарным событием). Элементарные исходы обозначим через  и т.д. В нашем примере возможны следующие 6 элементарных исходов:  - появился белый шар;  - появился красный шар;  - появился синий шар. Легко видеть, что эти исходы образуют полную группу попарно несовместных событий (обязательно появится только один шар) и они равновозможны (шар вынимают наудачу, шары одинаковы и тщательно перемешаны).

Те элементарные исходы, в которых интересующее нас событие наступает, назовем благоприятствующими этому событию. В нашем примере благоприятствуют событию A (появлению цветного шара) следующие 5 исходов: .

Таким образом, событие А наблюдается, если в испытании наступает один, безразлично какой, из элементарных исходов, благоприятствующих A; в нашем примере А наблюдается, если наступит , или , или , или , или . В этом смысле событие А подразделяется на несколько элементарных событий (); элементарное же событие не подразделяется на другие события. В этом состоит различие между событием А и элементарным событием (элементарным исходом).

Отношение числа благоприятствующих событию А элементарных исходов к их общему числу называют вероятностью события А и обозначают через Р (А). В рассматриваемом примере всего элементарных исходов 6; из них 5 благоприятствуют событию А. Следовательно, вероятность того, что взятый шар окажется цветным, равна Р (A) = 5 / 6. Это число и дает ту количественную оценку степени возможности появления цветного шара, которую мы хотели найти. Дадим теперь определение вероятности.

Вероятностью события А называют отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу. Итак, вероятность события А определяется формулой

Р (A) = m / n,

где m - число элементарных исходов, благоприятствующих A; n - число всех возможных элементарных исходов испытания.

Здесь предполагается, что элементарные исходы несовместны, равновозможны и образуют полную группу. Из определения вероятности вытекают следующие ее свойства:

С в о й с т в о 1. Вероятность достоверного события равна единице.

Действительно, если событие достоверно, то каждый элементарный исход испытания благоприятствует событию. В этом случае m = n, следовательно,

Р (A) = m / n = n / n = 1.

С в о й с т в о 2. Вероятность невозможного события равна нулю.

Действительно, если событие невозможно, то ни один из элементарных исходов испытания не благоприятствует событию. В этом случае m = 0, следовательно,

Р (А) = m / n = 0 / n = 0.

С в о й с т в о 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Действительно, случайному событию благоприятствует лишь часть из общего числа элементарных исходов испытания. В этом случае 0 < m < n, значит, 0 < m / n < 1, следовательно,

0 < Р (А) < 1

.

Итак, вероятность любого события удовлетворяет двойному неравенству

0 <= Р (A) < 1.

Далее приведены теоремы, которые позволяют по известным вероятностям одних событий находить вероятности других событий.

З а м е ч а н и е. Современные строгие курсы теории вероятностей построены на теоретико-множественной основе. Ограничимся изложением на языке теории множеств тех понятий, которые рассмотрены выше.

Пусть в результате испытания наступает одно и только одно из событий i, (i = 1, 2, ..., n). События i, называют элементарными событиями (элементарными исходами). Уже отсюда следует, что элементарные события попарно несовместны. Множество всех элементарных событий, которые могут появиться в испытании, называютпространством элементарных событий , а сами элементарные события - точками пространства .

Событие А отождествляют с подмножеством (пространства ), элементы которого есть элементарные исходы, благоприятствующие А; событие В есть подмножество , элементы которого есть исходы, благоприятствующие В, и т.д. Таким образом, множество всех событий, которые могут наступить в испытании, есть множество всех подмножеств. Само  наступает при любом исходе испытания, поэтому  - достоверное событие; пустое подмножество пространства  - невозможное событие (оно не наступает ни при каком исходе испытания).

Заметим, что элементарные события выделяются из числа всех событий тем, что каждое из них содержит только один элемент .

Каждому элементарному исходу i, ставят в соответствие положительное число pi - вероятность этого исхода, причем

По определению, вероятность Р(А) события А равна сумме вероятностей элементарных исходов, благоприятствующих А. Отсюда легко получить, что вероятность события достоверного равна единице, невозможного - нулю, произвольного - заключена между нулем и единицей.

Рассмотрим важный частный случай, когда все исходы равновозможны. Число исходов равно n, сумма вероятностей всех исходов равна единице; следовательно, вероятность каждого исхода равна 1 / n. Пусть событию А благоприятствует m исходов. Вероятность события А равна сумме вероятностей исходов, благоприятствующих А:

Р (А) = 1 / n + 1 / n + .. + 1 / n.

Учитывая, что число слагаемых равно m, имеем

Р (А) = m / n.

Получено классическое определение вероятности.

Построение логически полноценной теории вероятностей основано на аксиоматическом определении случайного события и его вероятности. В системе аксиом, предложенной А. Н. Колмогоровым, неопре-деляемыми понятиями являются элементарное событие и вероятность. Приведем аксиомы, определяющие вероятность:

1. Каждому событию А поставлено в соответствие неотрицательное действительное число Р (А). Это число называется вероятностью события А.

2. Вероятность достоверного события равна единице:

P() = l.

3. Вероятность наступления хотя бы одного из попарно несовместных событий равна сумме вероятностей этих событий.

Исходя из этих аксиом, свойства вероятностей и зависимости между ними выводят в качестве теорем.

3. Основные формулы комбинаторики

В данном разделе мы займёмся подсчётом числа «шансов». О числе шансов говорят, когда возможно несколько результатов какого-либо действия (извлечение карты из колоды, подбрасывание кубика или монетки). Число шансов — это число способов проделать это действие или, что то же самое, число возможных результатов этого действия.

Теорема о перемножении шансов

Пусть одно действие можно проделать пятью способами, а другое — двумя. Каким числом способов можно проделать пару этих действий?

Теорема 1. Пусть множество   состоит из   элементов:  , а множество   — из   элементов:  . Тогда можно образовать ровно   пар  , взяв первый элемент из множества  , а второй — из множества  .

Замечание 1. Можно сформулировать утверждение теоремы 1 так: если первый элемент можно выбрать   способами, а второй элемент —   способами, то пару элементов можно выбрать   способами.

Доказательство. С элементом   мы можем образовать   пар:  . Столько же пар можно составить с элементом  , столько же — с элементом  и с любым другим из   элементов множества  . Т.е. всего возможно   пар, в которых первый элемент выбран из множества  , а второй — из множества  .

QED

Упражнение 1. С помощью теоремы 1 доказать, что:

а)

при подбрасывании трёх монет возможно 2·2·2=8 различных результатов;

б)

бросая дважды игральную кость, получим 6·6=36 различных результатов;

в)

трёхзначных чисел бывает 9·10·10=900;

г)

трёхзначных чисел, все цифры которых различны, существует 9·9·8;

д)

чётных трёхзначных чисел возможно 9·10·5.

Урны и шарики

Есть урна (ящик), содержащая   пронумерованных объектов (шаров). Мы выбираем из этой урны   шаров; результатом выбора является набор из   шаров. Нас интересует, сколькими способами можно выбрать   шаров из  , или сколько различных результатов может получиться. На этот вопрос нельзя дать однозначный ответ, пока мы не определимся: а) с тем, как организован выбор (можно ли шары возвращать в урну), и б) с тем, что понимается под различными результатами выбора.

Рассмотрим следующие возможные способы выбора.

1.

Выбор с возвращением: каждый вынутый шар возвращается в урну, каждый следующий шар выбирается из полной урны. В полученном наборе из   номеров шаров могут встречаться одни и те же номера.

2.

Выбор без возвращения: вынутые шары в урну не возвращаются, и в полученном наборе не могут встречаться одни и те же номера.

Условимся, какие результаты выбора (наборы из   номеров шаров) мы будем считать различными. Есть ровно две возможности.

1.

Выбор с учётом порядка: два набора номеров шаров считаются различными, если они отличаются составом или порядком номеров. Так, при выборе трёх шаров из урны, содержащей 5 шаров, наборы (1, 5, 2), (2, 5, 1) и (4, 4, 5) различны, если порядок учитывается.

2.

Выбор без учёта порядка: два набора номеров шаров считаются различными, если они отличаются составом. Наборы, отличающиеся лишь порядком следования номеров, считаются одинаковыми.

Так, наборы (1, 5, 2) и (2, 5, 1) не различаются и образуют один и тот же результат выбора, если порядок не учитывается.

Подсчитаем, сколько возможно различных результатов для каждой из четырёх схем выбора (выбор с возвращением или без, и в каждом из этих случаев — с учётом порядка или без).

Упражнение 2. Перечислить все возможные результаты в каждой из четырёх схем при выборе двух шаров из четырёх. Например, при выборе с возвращением и без учёта порядка: (1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4).