
- •1. Основные принципы работы цп. Машина фон Неймана.
- •2. Аппаратные прерывания pc,обрабатываемые bios. Общая характеристика.
- •1. Ввод-вывод по опросу. Временные диаграммы, особенности программной реализации.
- •В ывод информации Процессор выставляет данные в порт и считывает
- •2. Способы организации пдп: «прозрачный» режим.
- •2. Способы организации пдп: метод захват цикла.
- •1. Прямой доступ к памяти. Общая характеристика.
- •2. Особенности разработки по в системах с прерываниями.
- •2. Типовые временные диаграммы обработки аппаратного прерывания на примере любого микропроцессора.
- •1. Сравнительная характеристика методов ввода-вывода.
- •По опросу:
- •В ывод информации Процессор выставляет данные в порт и считывает
- •2) По прерыванию:
- •2. Организация прерываний в ibm pc. Аппаратная часть. Обработка аппаратных прерываний.
- •Билет n 7
- •2. Стандартный контроллер пдп. Общая характеристика
- •2. Ввод-вывод по прерываниям. Достоинства и недостатки.
- •2. Общая характеристика векторных прерываний.
- •1. Методы передачи данных: синхронный метод.
- •Билет n 11
- •1. Последовательные интерфейсы передачи данных: spi, i2c, rs232 и др. Сравнительная характеристика.
- •2. Ввод-вывод по опросу. Достоинства и недостатки.
- •В ывод информации Процессор выставляет данные в порт и считывает
- •1. Формат передачи данных в интерфейсе rs-232.
- •2. Организация прерываний в ibm pc. Общая характеристика.
- •Билет n 13
- •1. Методы передачи данных: асинхронный, асинхронно-синхронный, синхронный. Сравнительная характеристика.
- •2. Реализация прерываний по уровню и по фронту. Сравнительная характеристика.
- •1. Способы передачи информации: параллельный, параллельно-последовательный, последовательный.
- •2. Системы на кристалле. Системные шины, общая характеристика.
- •1. Методы ввода-вывода. Общая характеристика.
- •2. Контроллеры прерываний. Общая характеристика.
- •1. Интерфейсы «общая шина», «изолированная шина». Сравнительная характеристика.
- •2. Организация прерываний в ibm pc.
- •1. Микроконтроллеры с гарвардской архитектурой. Общая характеристика.
- •2. Организация мпс. Шинная структура. Варианты исполнения.
- •1. Сигнальные процессоры. Архитектура, общая характеристика
- •2. Системы на кристалле. Сходство и отличия от классических микропроцессорных систем
- •1. Типовые режимы пересылок данных в шинах систем на кристалле..
- •2. Элементная база современных мпс: типовые элементы, контроллеры и т.Д
- •1. Системы со встроенным вводом-выводом. Достоинства и недостатки.
- •В ывод информации Процессор выставляет данные в порт и считывает
- •2) По прерыванию:
- •2. Передача информации в мпс: методы стробирования.
- •2. Интерфейсы. Общая характеристика.
- •1. Организация прерываний в микроконтроллерах (на примерах i8080, i8085, z80, 8086).
- •2. Память. Способы классификации, общая характеристика
- •1. Интерфейсы. Общие определения, стандартные интерфейсы.
- •2. Архитектура фон Неймана и ее модификации в системах с прерываниями и пдп.
- •1. Методы разработки и отладки мпс: макетирование, моделирование. Сравнительная характеристика.
- •1. Инструментальные средства отладки микропроцессорных систем: логические, сигнатурные анализаторы и т.Н.
- •2. Интерфейсы. Общие определения, стандартные интерфейсы.
Билет n 11
1. Последовательные интерфейсы передачи данных: spi, i2c, rs232 и др. Сравнительная характеристика.
Принципы работы интерфейса RS-232.
Обычно PC имеют в своем составе два интерфейса RS-232C, которые обозначаются COM1 и COM2. Возможна установка дополнительного оборудования, которое обеспечивает функционирование в составе PC четырех, восьми и шестнадцати интерфейсов RS-232C.
Интерфейс RS-232C обеспечивает следующие возможности:
1) применение PC в качестве абонентского пункта в системах и сетях телеобработки данных.
2) подключение к PC различных устройств ввода-вывода;
3) объединение нескольких PC между собой и с другими ЭВМ для организации перекачки файлов между ними.
Широкое применение интерфейса RS-232C объясняется его универсальностью в части диапазона скоростей передачи информации (от 50 до 115 000 бит в секунду), "прозрачностью", т.е. отсутствием запрещенных к использованию для передачи данных кодовых комбинаций, наличием специализированных БИС и ИС, на которых достаточно эффективно реализуется данный интерфейс, простотой конструкции соединительных кабелей.
Основные принципы обмена информацией по интерфейсу RS-232C заключаются в следующем:
1) обмен данными обеспечивается по двум цепям, каждая из которых является для одной из сторон передающей, а для другой приемной;
2) в исходном состоянии по каждой из этих цепей передается двоичная единица, т.е. стоповая посылка. Передача стоповой посылки может выполняться сколько угодно долго;
3) передаче каждого знака данных предшествует передача стартовой посылки, т.е. передача двоичного нуля в течение времени, равного времени передачи одного бита данных;
4) после передачи стартовой посылки обеспечивается последовательная передача всех разрядов знака данных, начиная с младшего разряда. Количество разрядов знака может быть 5, 6, 7 или 8;
5) после передачи последнего разряда знака данных возможна передача контрольного разряда, который дополняет сумму по модулю 2 переданных разрядов до четности или нечетности.
6) после передачи контрольного разряда или последнего разряда знака, если формирование контрольного разряда не предусмотрено, обеспечивается передача стоповой посылки. Минимальная длительность посылки может быть равной длительности передачи одного, полутора или двух бит данных.
У SPI и I2C общая особенность для передачи используется два провода.
Интерфейс SPI работает со стробиованием по фронту сигнала (клока) т.е. по одной линии передаются данные по другой – клок. В I2C стробирование осуществляется по уровню.
Преимущества шины SPI |
Преимущества шины I2C |
Предельная простота протокола передачи на физическом уровне обуславливает высокую надежность и быстродействие передачи. Предельное быстродействие шины SPI измеряется десятками мегагерц и, поэтому, она идеальна для потоковой передачи больших объемов данных и широко используется в высокоскоростных ЦАП/АЦП, драйверах светодиодных дисплеев и микросхемах памяти. |
Шина I2C остается двухпроводной, независимо от количества подключенной к ней микросхем. |
Все линии шины SPI являются однонаправленными, что существенно упрощает решение задачи преобразования уровней и гальванической изоляции микросхем. |
Возможность мультимастерной работы, когда к шине подключено несколько ведущих микросхем. |
Простота программной реализации протокола SPI. |
Протокол I2C является более стандартизованным, поэтому, пользователь I2C-микросхем более защищен от проблем несовместимости выбранных компонентов. |