Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Voprosy_k_zachetu_po_matematike.doc
Скачиваний:
3
Добавлен:
26.04.2019
Размер:
1.39 Mб
Скачать

28 Вопрос:

Правило Бернулли[1]-Лопита́ля — метод нахождения пределов функций, раскрывающий неопределённости вида 0 / 0 и . Обосновывающая метод теорема утверждает, что при некоторых условиях предел отношения функций равен пределу отношения их производных.

Условия:

  1. или ;

  2. и дифференцируемы в проколотой окрестности ;

  3. в проколотой окрестности ;

  4. существует ,

тогда существует .

Пределы также могут быть односторонними.

29 Вопрос: Выпуклые и вогнутые функции

Введем обозначение: x=(x1,x2,:,xn) - n-мерный вектор.

Определение:

n мерная функция f(x), определенная на выпуклом множестве D, называется выпуклой функцией тогда и только тогда, когда для любых двух точек x(1) и x(2) принадлежащих D, и любого числа L (0<=L<=1) выполняется неравенство:

f(Lx(1) +(1-L)x(2))<=Lf(x(1))+(1-L)f(x(2))

Проиллюстрируем определение выпуклой функции для случая одной переменной:

Свойства выпуклых функций:

  1. Хорда, соединяющая две любые точки кривой графика выпуклой функции, всегда проходит над (или выше) кривой в интервале между двумя этими точками.

  2. Выпуклая функция лежит над своими касательными

  3. Тангенс угла наклона касательной, или первая производная f(x), возрастает или, по крайней мере, не убывает при увеличении x.

  4. Вторая производная f(x) всегда не отрицательна на рассматриваемом интервале.

  5. Для выпуклой функции локальный минимум всегда является глобальным минимумом.

Градиент функции f(x1,x2,:,xn) определяется как вектор:

С f(x1,:,xn)=(df/dx1,df/dx2,:,df/dxn)T

Матрица Гессе(гессиан) для функции f(x1,:,xn) есть симметрическая матрица порядка n*n:

Hf(x1,:,xn)=[d2f/dxidxj]=С2f

 

Проверка функции на выпуклость

Функция f(x1,:,xn) выпуклая, если ее матрица Гессе положительно определена или положительно полуопределена для всех значений x1,x2,:,xn.

Для функции одной переменной: функция f(x) выпуклая, если ее вторая производная неотрицательна для всех значений x:

d2f/dx2=>0, для всех x

Если матрица Гессе Hf - положительно определенная матрица, то f называется строго выпуклой функцией и обладает единственной точкой минимума.

Вогнутая функция

Функция f(x1,:,xn) является вогнутой функцией на множестве D тогда и только тогда, когда -f(x) есть выпуклая функция на D.

Проверка функции на вогнутость

Функция f(x1,:,xn) вогнутая, если ее матрица Гессе отрицательно определена, или отрицательно полуопределена для всех значений x1,:,xn.

30 Вопрос:

Непрерывная на отрезке [a; b] функция f (x) называется выпуклой вверх на этом отрезке, если для любых точек x1 и x2 из этого отрезка

Другими словами, если для любых точек x1 и x2 отрезка [a; b] секущая AB проходит под графиком функции f (x), то функция f выпукла вверх.

Аналогично определяется функция, выпуклая вниз.

Дважды дифференцируемая на [a; b] функция f (x) выпукла вверх, если для любого

Дважды дифференцируемая на [a; b] функция f (x) выпукла вниз, если для любого

Так, вторая производная функции равна откуда следует, что квадратичная функция выпукла вниз на всей области определения.

Пусть функция f (x) непрерывна в точке и имеет в этой точке конечную или бесконечную производную. Тогда точка называется точкой перегиба функции f, если в этой точке изменяется направление ее выпуклости.

Необходимое условие наличия точки перегиба. Если – точка перегиба функции f (x), и функция f (x) имеет вторую производную, непрерывную в этой точке, то

Достаточные условия наличия точки перегиба.

Пусть функция f (x) непрерывна и имеет конечную или бесконечную производную в точке  Если меняет знак при переходе через точку  то – точка перегиба функции f (x).

Если   то – точка перегиба функции f (x).

 

В заключение приведем примеры, когда точка x0 не является точкой перегиба несмотря на то, что ее вторая производная меняет знак при переходе через эту точку:

  • если функция разрывна в точке (например    );

  • в случае угловой точки (например,   

Не являются точками перегиба и точки возврата, например точка у функции

 

Все вышеперечисленные случаи изображены на рисунке.

График 3.2.3.2.

Точки, не являющиеся точками перегиба: точка разрыва, точка возврата, угловая точка.

31 ВОПРОС:

Тейлора формула

        формула

        

        

        изображающая функцию f (x), имеющую n-ю производную f (n)(a) в точке х = а, в виде суммы многочлена степени n, расположенного по степеням ха, и остаточного члена Rn (x), являющегося в окрестности точки а бесконечно малой более высокого порядка, чем (x—a) n [то есть Rn (x) = an (x)(xa) n, где an (x) → 0 при ха]. Если в интервале между а и х существует (n + 1)-я производная, то Rn (x) можно представить в видах:

        

        ,

        где ξ и ξ1 — какие-то точки указанного интервала (остаточный член Т. ф. в формах Лагранжа и соответственно Коши). График многочлена, входящего в Т. ф.. имеет в точке а Соприкосновение не ниже n-го порядка с графиком функции f (x). Т. ф. применяют для исследования функций и для приближённых вычислений.

32 ВОПРОС:

Первообразная и неопределенный интеграл

Первообразной функцией для функции f(x) называется такая функция F(х), производная которой равна данной функции

F'(x) = f(x).

Обозначение

где F'(x) = f(x). Функция f(x) называется подынтегральной функцией, а выражение f(x)dx - подынтегральным выражением.

33 ВОПРОС:

Свойства неопределенного интеграла

1°. Производная неопределенного интеграла равна подынтегральной функции; дифференциал от неопределенного интеграла равен подынтегральному выражению, т.е.

2°. Неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной, т.е.

3°. Постоянный множитель можно вынести из под знака интеграла, т.е. если k = const ≠ 0, то

4° . Неопределенный интеграл от алгебраической суммы двух функций равен алгебраической сумме интегралов от этих функций в отдельности.

34 ВОПРОС:

Метод замены переменной в неопределенном интеграле

Переходим к рассмотрению общего случая – метода замены переменных в неопределенном интеграле.

Пример 5

Найти неопределенный интеграл.

В качестве примера я взял интеграл, который мы рассматривали в самом начале урока. Как мы уже  говорили, для решения интеграла нам приглянулась табличная формула , и всё дело хотелось бы свести к ней.

Идея метода замены состоит в том, чтобы сложное выражение (или некоторую функцию) заменить одной буквой. В данном случае напрашивается: Вторая по популярности буква для замены – это буква . В принципе, можно использовать и другие буквы, но мы всё-таки будем придерживаться традиций.

Итак: Но при замене у нас остаётся ! Наверное, многие догадались, что если осуществляется переход к новой переменной , то в новом интеграле всё должно быть выражено через букву , и дифференциалу  там совсем не место. Следует логичный вывод, что  нужно превратить в некоторое выражение, которое зависит только от .

Действие следующее. После того, как мы подобрали замену, в данном примере,  , нам нужно найти дифференциал . С дифференциалами, думаю, дружба уже у всех налажена.

Так как , то

После разборок с дифференциалом окончательный результат рекомендую переписать максимально коротко: Теперь по правилам пропорции выражаем нужный нам :

В итоге:   Таким образом: А это уже самый что ни на есть табличный интеграл  (таблица, интегралов, естественно, справедлива и для переменной ).

В заключении осталось провести обратную замену. Вспоминаем, что .

Готово.

Чистовое оформление рассмотренного примера должно выглядеть примерно так:

Проведем замену:

Значок  не несет никакого математического смысла, он обозначает, что мы прервали решение для промежуточных объяснений.

Также всем рекомендую использовать математический знак  вместо фразы «из этого следует это». И коротко, и удобно.

При оформлении примера в тетради надстрочную пометку   обратной замены лучше выполнять простым карандашом.

Внимание! В следующих примерах нахождение дифференциала  расписываться подробно не будет.

А теперь самое время вспомнить первый способ решения:

В чем разница? Принципиальной разницы нет. Это фактически одно и то же. Но с точки зрения оформления задания метод подведения функции под знак дифференциала – гораздо короче. Возникает вопрос. Если первый способ короче, то зачем тогда использовать метод замены? Дело в том, что для ряда интегралов не так-то просто «подогнать» функцию под знак дифференциала.

Интегри́рование по частя́м — один из способов нахождения интеграла. Суть метода в следующем: если подынтегральная функция представима в виде произведения двух непрерывных и гладких функций (каждая из которых может быть как элементарной функцией, так и композицией), то справедливы следующие формулы

для неопределённого интеграла:

для определённого:

Предполагается, что нахождение интеграла проще, чем . В противном случае применение метода не оправданно.

Получение формул

для неопределённого интеграла

Функции и гладкие, следовательно, возможно дифференцирование:

Эти функции также непрерывны, значит можно взять интеграл от обеих частей равенства:

Операция интегрирования обратна дифференцированию:

После перестановок:

Не стоит, однако, забывать, что это равенство подразумевается в смысле равенства множеств, то есть, грубо говоря, с точностью до константы, возникающей во время интегрирования.

Типичную ошибку «потери» константы при обращении с неопределенным интегралом иллюстрирует следующий пример-софизм:

Отсюда «следствие»: 0 = 1, что очевидно неверно.

для определённого

В целом аналогично случаю неопределённого интеграла:

35 ВОПРОС:

Интегрирование рациональных функций

Для интегрирования рациональной функции , где P(x) и Q(x) - полиномы, используется следующая последовательность шагов:

  1. Если дробь неправильная (т.е. степень P(x) больше степени Q(x)), преобразовать ее в правильную, выделив целое выражение;

  1. Разложить знаменатель Q(x) на произведение одночленов и/или несократимых квадратичных выражений;

  1. Разложить рациональную дробь на простейшие дроби, используя метод неопределенных коэффициентов;

  1. Вычислить интегралы от простейших дробей.

Рассмотрим указанные шаги более подробно.

Шаг 1. Преобразование неправильной рациональной дроби

Если дробь неправильная (т.е. степень числителя P(x) больше степени знаменателя Q(x)), разделим многочлен P(x) на Q(x). Получим следующее выражение:

где - правильная рациональная дробь.

Шаг 2. Разложение знаменателя на простейшие дроби

Запишем многочлен знаменателя Q(x) в виде

где квадратичные функции являются несократимыми, то есть не имеющими действительных корней.

Шаг 3. Разложение рациональной дроби на сумму простейших дробей.

Запишем рациональную функцию в следующем виде:

Общее число неопределенных коэффициентов Ai , Bi , Ki , Li , Mi , Ni , ... должно быть равно степени знаменателя Q(x). Затем умножим обе части полученного уравнения на знаменатель Q(x) и приравняем коэффициенты при слагаемых с одинаковыми степенями x. В результате мы получим систему линейных уравнений относительно неизвестных коэффициентов Ai , Bi , Ki , Li , Mi , Ni , .... Данная система всегда имеет единственное решение. Описанный алгоритм представляет собой метод неопределенных коэффициентов.

Шаг 4. Интегрирование простейших рациональных дробей.

Простейшие дроби, полученные при разложении произвольной правильной рациональной дроби, интегрируются с помощью следующих шести формул:

У дробей с квадратичным знаменателем сначала необходимо выделить полный квадрат:

где Затем применяются следующие формулы:

Интеграл может быть вычислен за k шагов с помощью формулы редукции

36 ВОПРОС:

Определение определённого интеграла. Пусть на отрезке [a,b] задана функция y = f(x). Разобьём отрезок [a,b] произвольным образом на n частей точками [x0 , x1], [x1 , x2], …, [xi-1 , xi], …, [xn-1 , xn]; длину i-го отрезка обозначим : ; максимальную из длин отрезков обозначим . На каждом из отрезков [xi-1 , xi] выберем произвольную точку и составим сумму . Сумма называется интегральной суммой. Если существует (конечный) предел последовательности интегральных сумм при , не зависящий ни от способа разбиения отрезка [a,b] на части [xi-1 , xi], ни от выбора точек , то функция f(x) называется интегрируемой по отрезку [a,b], а этот предел называется определённым интегралом от функции f(x) по отрезку [a,b] и обозначается . Функция f(x), как и в случае неопределённого интеграла, называется подынтегральной, числа a и b - соответственно, нижним и верхним пределами интегрирования. Кратко определение иногда записывают так: . В этом определении предполагается, что b> a. Для других случаев примем, тоже по определению: Если b=a, то ; если b<a, то .

Как следует из пункта 11.1.1, если f(x) >0 на отрезке [a,b], то равен площади криволинейной трапеции ABCD, ограниченной снизу отрезком [a,b], слева и справа - прямыми x = a и x = b, сверху – функцией y = f(x).

37 ВОПРОС:

Интеграл с переменным верхним пределом

Рассмотрим функцию , заданную на отрезке , и предположим, что она интегрируема на отрезке . Тогда при любом эта функция будет интегрируема на отрезке и, следовательно, функция

определена при всех . При мы по определению положим её равной 0, то есть будем считать, что для любой функции и точки из её области определения. Итак, функция равняется значению определённого интеграла с переменным верхним пределом, вычисленного от интегрируемой функции , не обязательно непрерывной.

        Теорема 3.11   Функция , определённая выше, непрерывна при всех для любой интегрируемой функции .

        Доказательство.     Заметим, что если функция положительна, то значение интерпретируется как площадь под графиком , лежащая над отрезком . Если дать приращение , то площадь получит приращение в виде площади полоски, лежащей над отрезком (см. рис.).

Рис.3.4.

Эта площадь, вследствие ограниченности интегрируемой функции, мала, если приращение мало; это и означает непрерывность функции в точке .

Проведём теперь более аккуратные рассуждения, не предполагая, что функция принимает положительные значения.

Пусть фиксирована точка и взято такое приращение , что . Пользуясь аддитивностью интеграла, получаем, что

Согласно неравенству (3.5),

Но по теореме 3.5 функция ограничена, поэтому существует такая постоянная , что при всех и, в том числе, при . Воспользовавшись теоремой об интегрировании неравенства, получаем, что

откуда

При получаем по теореме "о двух милиционерах", что и , что означает, что функция непрерывна справа в любой точке .

Рассматривая аналогично отрезок при и , получаем, что

при , что означает непрерывность функции слева в любой точке .

Тем самым функция непрерывна справа в точке , непрерывна слева в точке и непрерывна (с обеих сторон) в любой точке , что и требовалось доказать.     

        Теорема 3.12   Пусть функция непрерывна на отрезке и функция определена всё той же формулой. Тогда имеет производную в любой точке интервала , производную справа в точке и производную слева в точке , причём эти производные совпадают со значением функции в соответствующей точке:

при  и 

        Доказательство.     Снова рассмотрим приращение при , , . Поскольку функция непрерывна, мы можем применить теорему о среднем к интегралу по отрезку :

где  -- некоторая точка отрезка . Получаем, деля на :

откуда при из непрерывности следует, что

поскольку при . Получили, что правая производная совпадает с во всех точках .

Аналогично доказывается, что левая производная совпадает с во всех точках Во внутренних точках совпадение производных слева и справа со значением означает, что функция имеет производную , равную .     

Точно так же доказывается, что производная интеграла

от непрерывной функции по переменному нижнему пределу равняется :

Равенство означает, что функция является первообразной для на интервале . Другая первообразная -- это, очевидно, функция .

Итак, мы получили важный результат о наличии первообразной у любой непрерывной функции:

        Теорема 3.13   Пусть  -- непрерывная на интервале функция. Тогда на интервале функция имеет некоторую первообразную , то есть при всех .

        Доказательство.     Для доказательства достаточно фиксировать произвольную точку и положить

При эти определения не противоречат друг другу, поскольку и та, и другая формулы дают .

Нетрудно видеть, что при получается , при получаем . При производная слева даёт значение , а производная справа -- значение , так что производные слева и справа совпадают и , что и завершает доказательство.     

Пусть теперь  -- произвольная первообразная для непрерывной функции , заданной на некотором интервале , содержащем отрезок . Мы уже проверили, что функция , такая что при служит тогда первообразной для , а поскольку любые первообразные для одной и той же функции на заданном интервале могут отличаться лишь постоянным слагаемым, получаем, что

где , при всех , в том числе и при и . Получаем и , откуда

поскольку Итак, меняя обозначение переменной интегрирования на , получаем в итоге формулу

(3.6)

где  -- произвольная первообразная для функции . Эта формула называется формулой Ньютона - Лейбница. Она играет ключевую роль в интегральном исчислении и во всём математическом анализе.

Напомним, что мы получили её в предположении, что функция непрерывна. Если функция имеет разрыв на отрезке , то разность значений первообразной может не иметь никакого отношения к величине определённого интеграла. Поэтому при применении формулы Ньютона - Лейбница нужно строго следить за законностью этого действия.

Смысл формулы Ньютона - Лейбница (3.6) состоит в том, что для нахождения определённого интеграла нам достаточно теперь найти произвольную первообразную для функции (напомним, что для этого надо найти неопределённый интеграл) и взять разность значений этой первообразной в концах отрезка, .

Итак, формула Ньютона - Лейбница устанавливает связь между определённым интегралом от данной функции и первообразной для этой функции, то есть между определённым и неопределённым интегралами. Заметим, что смысл этих двух понятий первоначально совершенно различен: неопределённый интеграл -- это набор функций (первообразных), а определённый интеграл -- это число (равное пределу интегральных сумм).

При вычислениях разность часто называют подстановкой в функцию пределов и и обозначают . Таким образом, по определению,

а формулу Ньютона - Лейбница можно записать в виде

Несобственные интегралы первого рода

        Определение 4.1   Предположим, что функция задана на бесконечном промежутке вида и интегрируема на любом конечном отрезке , где . Таким образом, мы можем рассмотреть функцию

Если эта функция имеет предел то число называется значением несобственного интеграла первого рода

а сам интеграл называется сходящимся (иными словами, интеграл сходится).

Если же предела не существует (например, если при ), то интеграл называется расходящимся (то есть расходится) и не имеет никакого числового значения.     

Геометрически, в случае , величина несобственного интеграла означает, по определению, площадь бесконечно длинной области , лежащей в координатной плоскости между лучом на оси , графиком и вертикальным отрезком (см. рис.).

Рис.4.1.

Сходящиеся интегралы соответствуют таким областям , площадь которых конечна (хотя сама область неограничена), а расходящиеся (в случае ) -- неограниченным областям с бесконечной площадью. В случае, когда при , часто пишут формально:

однако нужно ясно понимать, что эта запись означает расходимость интеграла и отсутствие у него числового значения.

Само определение значения интеграла через предел интегралов по конечным, но увеличивающимся отрезкам означает исчерпание площади путем учёта все большей её части правый вертикальный отрезок, проведённый при , отодвигается всё дальше и дальше в бесконечность; в пределе будет учтена вся площадь под графиком (см. рис.).

Рис.4.2

Глава 3. Признаки сходимости и расходимости несобственных интегралов

Теорема 1. Пусть фиксировано число и функция интегрируема на любом отрезке , где . Тогда если несобственный интеграл сходится, то при любом сходится интеграл . Обратно, если при некотором сходится интеграл , то сходится и интеграл .

Теорема 2 (теоpема сpавнения)   Пусть даны две функции и , заданные на , причём при всех выполняется неравенство

Тогда из сходимости интеграла от большей функции, , следует сходимость интеграла от меньшей функции, , причём а из расходимости интеграла от меньшей функции, , следует расходимость интеграла от большей функции, :

Геометрически доказанное утверждение почти очевидно: оно означает, что если площадь под верхним графиком на следующем рисунке (она заштрихована), конечна, то конечна и имеет меньшее значение площадь под нижним графиком (она имеет двойную штриховку).

Рис. 5.

Если условие неотрицательности функций и не предполагается, то оба утверждения теоремы могут оказаться не верны: так, если взять и при всех , то интеграл от большей функции, оказывается сходящимся (его значение, очевидно, равно 0), а интеграл от меньшей функции, -- расходится (докажите расходимость, вычислив интеграл и рассмотрев его поведение при ).

При помощи теоремы 2 можем в некоторых случаях исследовать сходимость интеграла, не вычисляя его значения. Для доказательства сходимости интеграла от функции достаточно найти более простую функцию , для которой интеграл легко вычисляется и сходится. Согласно теореме, тогда исходный интеграл тоже сходится, причём мы получаем оценку его величины: . Если же нам нужно доказать расходимость интеграла , то достаточно найти такую (более просто устроенную) функцию , что и интеграл расходится.

Признак сходимости Абеля:

1. пусть функции f(x) и g(x) определены в промежутке , причём f(x) интегрируема в этом промежутке, т.е. интеграл сходится (условно или абсолютно);

2. g(x) монотонна и ограничена: .

Тогда интеграл сходится.

Признак сходимости Дирихле:

1. пусть функция f(x) интегрируема в любом конечном промежутке [a, b], и интеграл по этому промежутку ограничен (как функция верхнего предела b): ;

2. g(x) монотонно стремится к нулю при : .

Тогда интеграл сходится.

Эталонные интегралы

Пример 2. Рассмотрим интеграл

Если , то подынтегральная функция стремится к при , так что получается несобственный интеграл второго рода.

Рассмотрим такие случаи:

1) . Тогда интеграл вычисляется так:

поскольку при имеем и

2) . Тогда то есть интеграл расходится, поскольку при .

3) . Тогда и интеграл снова расходится, поскольку при , если показатель .

Заметим также, что при интеграл не является несобственным: это обычный (то есть собственный) интеграл от непрерывной ограниченной функции. Единственная неприятность получается при , поскольку тогда подынтегральная функция не определена при (и тождественно равна 1 при ). Но мы знаем, согласно одному из свойств определённого интеграла, что значение подынтегральной функции в одной точке можно изменить без изменения значения интеграла. Так что достаточно переопределить значение в 0, положив и получив собственный интеграл

Пример 3. Определим, при каких значениях показателя интеграл

cходится. Рассмотрим случай . Тогда

Поскольку при Значит, при интеграл сходится и имеет значение Рассмотрим случай . Тогда

поскольку

(то есть предела не существует) и . Значит, при интеграл расходится. Рассмотрим случай . Тогда

поскольку при Значит, при интеграл расходится. Итак, интеграл сходится (и функция определена и равна ) только при ; при интеграл расходится.

Теорема 3. Если интеграл сходится, то сходится также интеграл причём имеет место неравенство

График 3.2.3.1.

Выпуклая вверх функция.