Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ekzamenatsionnye_voprossy.docx
Скачиваний:
30
Добавлен:
26.04.2019
Размер:
335.28 Кб
Скачать

Динамика материальной точки и поступательного движения твердого тела.

Закон сохранения импульса тела    Импульсом тела называют векторную физическую величину, являющуюся количественной характеристикой поступательного движения тел. Импульс обозначается р. Импульс тела равен произведению массы тела на его скорость: р = mv. Направление вектора импульса р совпадает с направлением вектора скорости тела 0. Единица измерения импульса — кг • м/с.

Закон сохранения импульса лежит в основе реактивного движения. Реактивное движение — это такое движение тела, которое возникает после отделения от тела его части.

Инерциальная система отсчета

Инерциальная система отсчета (далее ИСО) - система отсчета, базовые тела которой не имеют ускорения, то есть установленные на них акселерометры показывают нулевые значения. В ИСО справедлив закон инерции: любое тело, на которое не действуют внешние силы или действие этих сил компенсируется, находится в состоянии покоя или равномерного прямолинейного движения.

Зако́н ине́рции (Первый закон Нью́тона): свободное тело, на которое не действуют силы со стороны других тел, находится в состоянии покоя или равномерного прямолинейного движения (понятие скорости здесь применяется к центру масс тела в случае непоступательного движения). Иными словами, телам свойственна ине́рция (от лат. inertia — «бездеятельность», «косность»), то есть явление сохранения скорости, если внешние воздействия на них скомпенсированы.

Центром масс (или центром инерции) механической системы называется воображаемая точка, которой приписывается масса всей системы и положение которой определяется радиусом-вектором:

Движение тела переменной массы

В некоторых случаях тел связано с изменением их массы, например масса ракеты уменьшается вследствие истечения газов, образующихся при сгорании топлива, и т. п.  Произведем вывод уравнения движения тела переменной массы на примере движения ракеты. Если в момент времени t масса ракеты m, а ее скорость v, то по истечении времени dt ее масса уменьшится на dm и станет равной т-dm, а скорость станет равной v+dv. Изменение импульса системы за промежуток времени dt    где u - скорость истечения газов относительно ракеты. Тогда    здесь учтено, что dmdv - малое высшего порядка малости по сравнению с остальными слагаемыми. Если на систему действуют внешние силы, то dp=Fdt, поэтому    или  (1)  Второе слагаемое в правой части (1) называют реактивной силой Fp. Если u противоположен v по направлению, то ракета ускоряется, а если совпадает с v, то тормозится.  Таким образом, мы получили уравнение движения тела переменной массы  (2)  которое впервые было выведено И. В. Мещерским (1859-1935).  Рассмотрим случай отсутвтия воздействия внешних сил на ракету. Положим в уравнении (1) F=0 и будем считать, что скорость выбрасываемых газов относительно ракеты постоянна (ракета движется прямолинейно), получим    откуда    Значение постоянной интегрирования С определим из начальных условий. Если в начальный момент времени стартовая масса m0, а ее скорость ракеты равна нулю, то С = uln(m0). Следовательно,    Это соотношение называется формулой Циолковского.  Выражения (2) и (3) верны для нерелятивистских движений, т. е. для случаев, когда скорости v и u малы по сравнению со скоростью света в вакууме.

Уравнение Мещерского

Уравнение Мещерского — основное уравнение в механике тел переменной массы, полученное Иваном Мещерским в 1904 году. Оно имеет вид:

,

где:

m — переменная масса тела; v — скорость движения тела переменной массы;

  • F — внешние силы (сопротивление среды и т. п.);

  •  — относительная скорость отделяющихся частиц;

  •  — относительная скорость присоединяющихся частиц;

  •  — секундный расход массы;

  •  — секундный приход массы.

Формула Циолковского может быть получена как результат решения этого уравнения.

Уравнение Мещерского является частным случаем второго закона Ньютона:

для случая, когда масса непостоянна. При этом величина:

называется реактивной силой.

Формула Циолковского

[править]

Материал из Википедии — свободной энциклопедии

Формула Циолковского определяет скорость, которую развивает летательный аппарат под воздействием тяги ракетного двигателя, неизменной по направлению, при отсутствии всех других сил. Эта скорость называется характеристической.

,

где:

V — конечная (после выработки всего топлива) скорость летательного аппарата;

I — удельный импульс ракетного двигателя (отношение тяги двигателя к секундному расходу массы топлива);

M1 — начальная масса летательного аппарата (полезная нагрузка + конструкция аппарата + топливо).

M2 — конечная масса летательного аппарата (полезная нагрузка + конструкция);

Эта формула была выведена К. Э. Циолковским в рукописи «Ракета» 10 мая 1897 года.[1]

Однако первыми уравнение движения тела с переменной массой решили английские исследователи У. Мур, а также П. Г. Тэйт и У. Дж. Стил из Кембриджского университета соответственно в 1810—1811 гг. и в 1856 году.

Формула Циолковского может быть получена путём интегрирования дифференциального уравнения Мещерского для материальной точки переменной массы:

,

в котором m — масса точки;

V — скорость точки;

u — относительная скорость, с которой движется отделяющаяся от точки часть её массы. Для ракетного двигателя эта величина и составляет его удельный импульс I[2]

Для многоступенчатой ракеты конечная скорость рассчитывается как сумма скоростей, полученных по формуле Циолковского отдельно для каждой ступени, причем при расчёте характеристической скорости каждой ступени к её начальной и конечной массе добавляется суммарная начальная масса всех последующих ступеней.

Введем обозначения:

M1i — масса заправленной i-ой ступени ракеты;

M2i — масса i-ой ступени без топлива;

Ii — удельный импульс двигателя i-ой ступени;

M0 — масса полезной нагрузки;

N — число ступеней ракеты.

Тогда формула Циолковского для многоступенчатой ракеты может быть записана в следующем виде:

Динамика вращательного движения.

Зако́н сохране́ния моме́нта и́мпульса (закон сохранения углового момента) — векторная сумма всех моментов импульса относительно любой оси для замкнутой системы остается постоянной в случае равновесия системы. В соответствии с этим, момент импульса замкнутой системы относительно любой неподвижной точки не изменяется со временем.

Закон сохранения момента импульса есть проявление изотропности пространства.

Моментом импульса (количества движения) материальной точки А относительно неподвижной точки О называется физическая величина, определяемая векторным произведением:    где r - радиус-вектор, проведенный из точки О в точку A, p=mv - импульс материальной точки (рис. 1); L - псевдовектор, направление которого совпадает с направлением поступательного движения правого винта при его вращении от r к р.

Рис.1

Модуль вектора момента импульса 

  где α - угол между векторами r и рl - плечо вектора р относительно точки О. 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]