Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
СТАТИСТИКА экзамен.docx
Скачиваний:
13
Добавлен:
23.04.2019
Размер:
175.41 Кб
Скачать

26. В чем состоит назначение ошибки аппроксимации?

Фактическое значение результативного признака y отличается от теоретических значений, рассчитанных по уравнению регрессии.

Чем меньше это отличие, тем ближе теоретические значения подходят к эмпирическим, и лучше качество модели.

Величина отклонений фактических и расчетных значений результативного признака  по каждому наблюдению представляет собой ошибку аппроксимации.

Поскольку  может быть как величиной положительной, так и отрицательной, то ошибки аппроксимации для каждого наблюдения принято определять в процентах по модулю.

Отклонения  можно рассматривать как абсолютную ошибку аппроксимации

Чтобы иметь общее суждение о качестве модели из относительных отклонений по каждому наблюдению определяют среднюю ошибку аппроксимации:

27. Основные виды графического представления статистической информации

Использование графиков для представления статистической информации позволяет придать статистическим данным наглядность и выразительность, облегчить их восприятие, а во многих случаях и анализ. Многообразие графических представлений статистических показателей дает огромные возможности для наиболее выразительной демонстрации явления или процесса.

Графиками в статистике называются условные изображения числовых величин и их соотношений в виде различных геометрических образов: точек, линий, плоских фигур и т. п. Статистический график позволяет сразу оценить характер изучаемого явления, присущие ему закономерности и особенности, тенденции развития, взаимосвязь характеризующих его показателей.

Статистические графики можно классифицировать по разным признакам: назначению (содержанию), способу построения и характеру графического образа.

По содержанию, или назначению, можно выделить:

графики сравнения в пространстве;

графики различных относительных величин (структуры, динамики и др.);

графики вариационных рядов;

графики размещения по территории;

графики взаимосвязанных показателей и т. д.

По способу построения графики можно разделить на диаграммы и статистические карты

Диаграммы-это графики количественных отношений

Статистические карты – графики количественного распределения по поверхности.

28. Коэффициент корреляции рангов Спирмена, его применение

Коэффициент ранговой корреляции Спирмена

- это количественная оценка статистического изучения связи между явлениями, используемая в непараметрических методах.

Коэффициент ранговой корреляции Спирмена относится к показателям оценки тесноты связи. Качественную характеристику тесноты связи коэффициента ранговой корреляции, как и других коэффициентов корреляции, можно оценить по шкале Чеддока.

Расчет коэффициента ранговой корреляции Спирмена состоит из следующих этапов:

1 Ранжирование признаков по возрастанию.

2 Определение разности рангов каждой пары сопоставляемых значений, d = dx - dy.

3 Возведение в квадрат разность di и нахождение общей суммы, ∑d2.

4 Вычисление коэффициента корреляции рангов по формуле:

где d2 – квадратов разностей между рангами; N – количество признаков, участвовавших в ранжировании.

Назначение сервиса

С помощью сервиса Коэффициент ранговой корреляции можно найти:

коэффициент ранговой корреляции Спирмена;

доверительный интервал для коэффициента корреляции Спирмена;

значимость коэффициента корреляции Спирмена;

Применение коэффициента ранговой корреляции Спирмена

Коэффициент корреляции рангов используется для оценки качества связи между двумя совокупностями. Кроме этого, его статистическая значимость применяется при анализе данных на гетероскедастичность.