
- •1.Трансформаторы. Основные понятия и определения. Классификация трансформаторов.
- •2.Режим х.Х. Тр-ра, векторная диаграмма. Опыт хх, схема замещения, характеристики и параметры хх.
- •3. Приведенный тр-р, уравнения электрического равновесия и схема замещения тр-ра.
- •4. Уравнение электрического состояния и магнитодвижущих сил тр-ра, токов первичной и вторичной обмоток.
- •5. Опыт кз, схемы замещения, характеристики и параметры кз.
- •6. Параллельная работа однофазных и трехфазных тр-ров.
- •7. Измерительные тр-ры тока и напряжения. Схемы включения приборов ч.З измерительные тр-ры.
- •8. Уточненная схема замещения тр-ров, векторная диаграмма. Изменение вторичного напряжения, потери и кпд тр-ра. Внешняя хар-ка тр-ра.
- •9. Автотрансформаторы. Применение, достоинства, недостатки, трехфазный автотр-р.
- •10. Трехфазные тр-ры, схемы соединения, векторные диаграммы. Понятие о группах соединения, определение групп соединения.
- •11.Потери и кпд эм. Потери основные и добавочные.
- •12. Нагрев и охлаждение эм. Постоянная времени нагрева и установившаяся температура, срок службы изоляции.
- •13.Эдс машины постоянного тока. Постоянная Се.
- •14. Генераторы постоянного тока. Уравнения электрического равновесия, моментов и мощностей. Осн хар-ки гпт. Генератор с независимой системой возбуждения, его харак-ки.
- •15. Электромагнитный момент мпт. Постоянная См. Практическая формула Мэм.
- •16. Двигатель пост тока с параллельной обмоткой возбуждения. Рабочие, механический и регулировочные хар-ки. Области применения.
- •17. Реакция якоря мпт. Полюсное деление, линейная нагрузка якоря, намагничивающая сила обмотки якоря. Способы борьбы с реакцией якоря.
- •18. Дпт с послед-й обмоткой возбуждения. Его рабочие, мех-е и регулировочные хар-ки.
- •19. Генераторное торможение, динамическое торможение, торможение противовключением дпт.
- •20. Генератор постоянного тока со смешанной обмоткой возбуждения. Его характеристики и основные свойства.
- •21. Генераторный, двигательный режим мпт, режим электромагнитного тормоза.
- •23. Классификация мпт по способу возбуждения. Условия самовозбуждения, схемы соединения обмоток возбуждения и обмоток ротора.
- •24. Дпт. Обратимость мпт. Уравнения электрического состояния и моментов. Ток двигателя и частота вращения. Реверсирование и регулирование частоты вращения дпт. Условие устойчивости работы эп.
- •25. Мпт, конструкция, принцип действия, генераторный и двигательный режим, уравнения электрического равновесия и уравнения моментов.
- •26. Определение и классификация эм (по типу рабочего поля, по роду токов, по назначению).
- •27. Общие принципы конструкции эм: материалы, применяемые в электромашиностроении.
- •28. Механическая характеристика ад. Ммакс, Мп, Мном, Sкр. Перегрузочная способность.
- •29. Уравнения намагничивающих сил и токов, приведенная асинхронная машина, схема замещения и уравнения электрического равновесия, векторная диаграмма.
- •30. Явления в ам с вращающимся ротором.
- •32. Явления в асинхронной машине с неподвижным ротором, векторная диаграмма х.Х., получение вращающего магнитного поля.
- •33. Влияние u, f, r ротора, на механическую характеристику ад. Рабочие характеристики ад.
- •34. Энергетическая диаграмма ад. Потери и кпд ад.
- •35. Генераторный, двигательный и тормозной режим ад.
- •36. Регулирование частоты вращения ад.
- •37,31. Пуск ад с короткозамкнутым и фазным ротором.
- •38. Однофазный ад, однофазный ад с конденсаторным пуском, конденсаторный двигатель.
- •39. Специальные типы ад, глубокопазный, двухклеточный.
- •40. Ам, принцип действия, конструкция, область применения, достоинства и недостатки.
- •41. Влияние возбуждения на ток якоря синхронных генераторов. U- Образные характеристики синхронных генераторов. Перевозбуждение и недовозбуждение синхронных генераторов.
- •42.Реакция якоря в синхронном генераторе.
- •44. Характеристики синхронных генераторов.
- •45. Рабочие х-ки сд. Конструктивные особенности сд (сравнительно с сг).
- •46. Синхронный двигатель. Перевод см из генераторного в двигательный режим. Мэм, Мсин, угловые характеристики.
- •47. Синхронные гидро – и турбогенераторы. Системы возбуждения синхронных машин.
- •48.Способы пуска сд. Асинхронный пуск сд.
46. Синхронный двигатель. Перевод см из генераторного в двигательный режим. Мэм, Мсин, угловые характеристики.
Синхронные двигатели имеют постоянную частоту вращения и поэтому применяются там, где не требуется регулирование частоты или она должна быть постоянной. Мощность синхронных двигателей составляет десятки, сотни и тысячи киловатт на крупных металлургических заводах, в шахтах и других предприятиях.
Электрическая мощность
.
Электромагнитный момент синхронной машины:
.
Эта зависимость носит название угловой характеристики синхронной машины (рис. 3.6).
Рис. 3.6. Угловая характеристика синхронной машины.
Если θ>0, то мощность и момент положительны, машина работает в режиме генератора и отдает электрическую мощность, а электромагнитный момент при этом является тормозящим моментом, который преодолевает первичный двигатель. Работа, совершаемая первичным двигателем, преобразуется в электрическую работу, отдаваемую генератором в сеть. При увеличении создаваемого первичным двигателем вращающего момента, ротор машины, вследствие сообщаемого ему ускорения, увеличивает угол θ и после нескольких колебаний около синхронной скорости восстанавливается равновесие вращающегося момента первичного двигателя и тормозящего электромагнитного момента генератора. Таким же образом восстанавливается это равновесие при уменьшении вращающего момента первичного двигателя посредством уменьшения угла θ и вызываемого этим снижения тормозящего электромагнитного момента.
Работа синхронного генератора устойчива при изменении угла θ в пределах от 0 до 90 градусов.
Кривая Мэ.м.=F(θ) за точкой θ=90 соответствует области неустойчивой работы синхронного генератора. В этих условиях вращающий момент первичного двигателя превышает максимальный тормозящий момент генератора, т. к. увеличение θ свыше 90 приводит к уменьшению тормозящего электромагнитного момента Мэ.м. Избыток вращающего момента создает дальнейшее ускорение ротора, что обуславливает дальнейшее возрастание θ и новое уменьшение тормозящего момента и т. д. пока генератор не выпадет из синхронизма. В таком случае нарушается автоматическая связь между частотой сети и скоростью вращения ротора; ЭДС машины и напряжение сети перестают уравновешивать друг друга, и токи в обмотках статора могут достигнуть весьма больших значений токов короткого замыкания, т. к. мгновенные значения ЭДС статора и напряжение сети могут теперь складываться, а не вычитаться, как при нормальной работе. При выпадении генератора из синхронизма его отключают от сети приборы автоматической защиты.
Уменьшение вращающего момента первичного двигателя вызывает соответствующее уменьшение угла θ, и когда θ станет равным нулю, тогда первичный двигатель будет лишь покрывать потери синхронной машины; в этих условиях при θ=0 машина не будет отдавать энергию в сеть как генератор и потреблять ее из сети как двигатель. Этот режим является промежуточным между режимами генератора и двигателя.
Если приложить к валу синхронной машины тормозящий момент, то он вызовет некоторое замедление вращения ротора, вследствие чего угол θ станет отрицательным. Это значит, что ротор отстанет на угол θ/р от результирующего поля машины, и последнее станет ведущим, а ротор – ведомым. Перемена знака θ вызовет изменение знака электрической мощности Р и электромагнитного момента Мэ.м.; машина переходит в режим двигателя; она потребляет энергию из сети, ее электромагнитный момент стал вращающим моментом, уравновешивающим механический тормозящий момент, приложенный к валу машины.
Работающая параллельно с сетью синхронная машина нагружается как в режиме двигателя, так и в режиме генератора, путем изменения момента, приложенного к валу. Практически используется только кратковременный переход двигателя в режим генератора для быстрого торможения двигателя.
- синхронизирующая мощность
- синхронизирующий момент.
Практически синхронная машина работает сравнительно далеко от предела статической устойчивости, соответствующего θ=90 градусов. У синхронных генераторов угол θ при номинальной нагрузке не превышает 20 градусов, а у двигателей, как менее ответственной машины, этот угол достигает 30 градусов.