Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
эсса_33_33_33.docx
Скачиваний:
8
Добавлен:
23.04.2019
Размер:
1.62 Mб
Скачать

6)Оу и регуляторы на их основе

Операционный усилитель (ОУ, OpAmp) — усилитель постоянного тока с дифференциальным входом и, как правило, единственным выходом, имеющий высокий коэффициент усиления. ОУ почти всегда используются в схемах с глубокой отрицательной обратной связью, которая, благодаря высокому коэффициенту усиления ОУ, полностью определяет коэффициент передачи полученной схемы.

Аналоговые регуляторы в системах подчиненного управления электроприводами строятся на основе операционных усилителей (ОУ) — усилителей постоянного тока с высоким входным и очень низким выходным сопротивлениями.

Для получения пропорционального регулятора (П-регулятора) на вход и в цепь обратной связи ОУ включают резисторы; интегрального регулятора (И-регулятора) во входную цепь включает резистор, а в цепь обратной связи — конденсатор; ПИ-регулятора во входную цепь-резистор, а в цепь обратной связи — последовательно соединенные резистор и конденсатор. ПИД-регулятор может быть выполнен на одном усилителе с помощью активно-емкостных цепей на входе и в цепи обратной связи.

Рис. 1. Структура аналогового регулятора, выполненного на операционном усилителе (а). Схема пропорционального регулятора с управляемым ограничением выходного сигнала (б). Характеристика вход-выход регулятора с управляемым ограничением выходного сигнала (в)

7,8) Управление ад при постоянстве потокосцепления

общий принцип моделирования и построения системы управления АД заключается в том, что для этого используется система координат, постоянно ориентированная по направлению какого-либо вектора, определяющего электромагнитный момент. Тогда проекция этого вектора на другую ось координат и соответствующее ей слагаемое в выражении для электромагнитного момента будут равны нулю, и формально оно принимает вид, идентичный выражению для электромагнитного момента двигателя постоянного тока

электромагнитный момент определяется через произведение потокосцепления ротора на ток ротора в виде

для построения системы векторного управления АД нужно выбрать вектор, относительно которого будет ориентирована система координат, и соответствующее выражение для электромагнитного момента, а затем определить, входящие в него величины для цепи статора и/или ротора. Например, в случае ориентации по потокосцеплению ротора ( ) момент можно представить как

9)Конструкция ротора шагового двигателя

Конструктивно шаговые электродвигатели состоят из статора, на котором расположены обмотки возбуждения, и ротора, выполненного из магнито-мягкого (ферромагнитного) материала или из магнито-твёрдого (магнитного) материала. Шаговые двигатели с магнитным ротором позволяют получать бо́льший крутящий момент и обеспечивают фиксацию ротора при обесточенных обмотках.

Гибридные двигатели сочетают в себе лучшие черты двигателей с переменным магнитным сопротивлением и двигателей с постоянными магнитами.

Ротор гибридного двигателя имеет зубцы, расположенные в осевом направлении. Ротор разделен на две части, между которыми расположен цилиндрический постоянный магнит. Таким образом, зубцы верхней половинки ротора являются северными полюсами, а зубцы нижней половинки — южными. Кроме того, верхняя и нижняя половинки ротора повернуты друг относительно друга на половину угла шага зубцов. Число пар полюсов ротора равно количеству зубцов на одной из его половинок. Зубчатые полюсные наконечники ротора, как и статор, набраны из отдельных пластин для уменьшения потерь на вихревые токи.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]