
- •1)Передаточная функция двигателя по обмотке возбуждения.
- •2) Преобразователь координат α-β в X-y
- •3) Cкалярное управление ад
- •4) Вентильный двигатель
- •6)Оу и регуляторы на их основе
- •7,8) Управление ад при постоянстве потокосцепления
- •9)Конструкция ротора шагового двигателя
- •10) Передаточная функция дпт при управлении цепи якоря.
- •11) Преобразователь координат 2 в 3.
- •12)Ацп параллельного типа
- •13) Компенсационные измерительные схемы.
- •14)Двухфазный ад
- •15) Системы уравнений описывающие асинхронный двигатель
- •20) Передаточная функция дпт при действии Мнагр.
- •21) Конструкция и работа вт (вращающийся трансформатор).
- •22) Инструментальные усилители.
- •23) Конструкция и работа сельсинов.
- •24) Конструкция и работа пч со звеном постоянного тока при угле проводимости 120о.
- •25) Схема и работа линейного вт.
- •30) Тиристорный регулятор напряжения.
- •31) Пч со звеном постоянного тока при угле проводимости 180о.
- •32) Фазометрический датчик момента.
- •34) Магнитный усилитель.
- •35) Пч со звеном постоянного тока и неуправляемым выпрямителем.
- •36) Мостовые измерительные схемы.
- •37) Непосредственный пч.
- •38) Эму с поперечным полем.
- •39) Аналоговый компаратор.
- •40) Системы команд пересылки данных.
- •41) Сторожевой таймер.
- •Область применения
- •1. Контроль работы аппаратно-программных комплексов на основе эвм.
- •2. Управление устройствами измерительной техники.
- •42) Система команд операций с битами.
- •43) Блок прерываний.
- •44) Команды ветвления.
- •45) Пуск и перезапуск контроллера.
- •46) Датчики тока.
- •47) Система команд арифметических операций.
- •48) Структура контролера и типы его памяти.
- •49) Сигма, дельта ацп.
- •50) Последовательный порт spi.
- •51) Магниточувствительные датчики.
- •52) Система команд логических операций.
- •54) Последовательный порт uart.
- •55) Таймер/счетчик 1
- •56) Таймер/счетчик 0.
- •57) Таймер счетчик 2.
- •58) Ацп последовательного типа
6)Оу и регуляторы на их основе
Операционный усилитель (ОУ, OpAmp) — усилитель постоянного тока с дифференциальным входом и, как правило, единственным выходом, имеющий высокий коэффициент усиления. ОУ почти всегда используются в схемах с глубокой отрицательной обратной связью, которая, благодаря высокому коэффициенту усиления ОУ, полностью определяет коэффициент передачи полученной схемы.
Аналоговые регуляторы в системах подчиненного управления электроприводами строятся на основе операционных усилителей (ОУ) — усилителей постоянного тока с высоким входным и очень низким выходным сопротивлениями.
Для получения пропорционального регулятора (П-регулятора) на вход и в цепь обратной связи ОУ включают резисторы; интегрального регулятора (И-регулятора) во входную цепь включает резистор, а в цепь обратной связи — конденсатор; ПИ-регулятора во входную цепь-резистор, а в цепь обратной связи — последовательно соединенные резистор и конденсатор. ПИД-регулятор может быть выполнен на одном усилителе с помощью активно-емкостных цепей на входе и в цепи обратной связи.
Рис. 1. Структура аналогового регулятора, выполненного на операционном усилителе (а). Схема пропорционального регулятора с управляемым ограничением выходного сигнала (б). Характеристика вход-выход регулятора с управляемым ограничением выходного сигнала (в)
7,8) Управление ад при постоянстве потокосцепления
общий принцип моделирования и построения системы управления АД заключается в том, что для этого используется система координат, постоянно ориентированная по направлению какого-либо вектора, определяющего электромагнитный момент. Тогда проекция этого вектора на другую ось координат и соответствующее ей слагаемое в выражении для электромагнитного момента будут равны нулю, и формально оно принимает вид, идентичный выражению для электромагнитного момента двигателя постоянного тока
электромагнитный момент определяется через произведение потокосцепления ротора на ток ротора в виде
для
построения системы векторного управления
АД нужно выбрать вектор, относительно
которого будет ориентирована система
координат, и соответствующее выражение
для электромагнитного момента, а затем
определить, входящие в него величины
для цепи статора и/или ротора. Например,
в случае ориентации по потокосцеплению
ротора (
)
момент можно представить как
9)Конструкция ротора шагового двигателя
Конструктивно шаговые электродвигатели состоят из статора, на котором расположены обмотки возбуждения, и ротора, выполненного из магнито-мягкого (ферромагнитного) материала или из магнито-твёрдого (магнитного) материала. Шаговые двигатели с магнитным ротором позволяют получать бо́льший крутящий момент и обеспечивают фиксацию ротора при обесточенных обмотках.
Гибридные двигатели сочетают в себе лучшие черты двигателей с переменным магнитным сопротивлением и двигателей с постоянными магнитами.
Ротор гибридного двигателя имеет зубцы, расположенные в осевом направлении. Ротор разделен на две части, между которыми расположен цилиндрический постоянный магнит. Таким образом, зубцы верхней половинки ротора являются северными полюсами, а зубцы нижней половинки — южными. Кроме того, верхняя и нижняя половинки ротора повернуты друг относительно друга на половину угла шага зубцов. Число пар полюсов ротора равно количеству зубцов на одной из его половинок. Зубчатые полюсные наконечники ротора, как и статор, набраны из отдельных пластин для уменьшения потерь на вихревые токи.