Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
омм.doc
Скачиваний:
7
Добавлен:
23.04.2019
Размер:
818.69 Кб
Скачать

10. Загальна постановка задачі лінійного програмування. Приклади економічних задач лінійного програмування.

Загальна лінійна економіко-математична модель економічних процесів та явищ — так звана загальна задача лінійного програмування подається у вигляді:

(2.1)

за умов:

(2.2)

(2.3)

Отже, потрібно знайти значення змінних x1, x2, …, xn, які задовольняють умови (2.2) і (2.3), і цільова функція (2.1) набуває екстремального (максимального чи мінімального) значення.

Для довільної задачі математичного програмування у § 1.2 були введені поняття допустимого та оптимального планів.

Для загальної задачі лінійного програмування використовуються такі поняття.

Вектор Х = (х1, х2, …, хn), координати якого задовольняють систему обмежень (2.2) та умови невід’ємності змінних (2.3), називається допустимим розв’язком (планом) задачі лінійного програмування.

Допустимий план Х = (х1, х2, …, хn) називається опорним планом задачі лінійного програмування, якщо він задовольняє не менше, ніж m лінійно незалежних обмежень системи (2.2) у вигляді рівностей, а також обмеження (2.3) щодо невід’ємності змінних.

Опорний план Х = (х1, х2, …, хn), називається невиродженим, якщо він містить точно m додатних змінних, інакше він вироджений.

Опорний план , за якого цільова функція (2.1) досягає масимального (чи мінімального) значення, називається оптимальним розв’язком (планом) задачі лінійного програмування.

11. Модель задачі лінійного програмування в розгорнутому і скороченому вигляді, а також в матричній і векторній формах.

за умов:

(2.6)

Ще компактнішим є запис задачі лінійного програмування у векторно-матричному вигляді:

max(min) Z = CX

за умов:

АХ = А0; (2.7)

Х ≥ 0,

де

є матрицею коефіцієнтів при змінних;

— вектор змінних; — вектор вільних членів;

С = (с1, с2, …, сп) — вектор коефіцієнтів при змінних у цільовій функції.

Часто задачу лінійного програмування зручно записувати у векторній формі:

max(min)Z = CX за умов:

A1x1 + A2x2 + … + Anxn = A0; (2.8)

X ≥0,

12. Властивості розв’язків задачі лінійного програмування. Геометрична інтерпретація задач лінійного програмування.

Властивості розв’язків задачі лінійного програмування формулюються у вигляді чотирьох теорем (доведення теорем та їх наслідки наведено нижче).

Властивість 1. (Теорема 2.2) Множина всіх планів задачі лінійного програмування опукла.

Властивість 2. (Теорема 2.3) Якщо задача лінійного програмування має оптимальний план, то екстремального значення цільова функція набуває в одній із вершин її багатогранника розв’язків. Якщо ж цільова функція набуває екстремального значення більш як в одній вершині цього багатогранника, то вона досягає його і в будь-якій точці, що є лінійною комбінацією таких вершин.

Властивість 3. (Теорема 2.4) Якщо відомо, що система векторів A1, A2, …, Ak (k ≤ n) у розкладі A1x1 +A2x2 + … + Anxn = A0, X ≥ 0 лінійно незалежна і така, що

A1x1 + A2x2 + … + Akxk = A0,

де всі xj ≥ 0, то точка X = (x1, x2, …, xk, 0, …, 0) є кутовою точкою багатогранника розв’язків.

Властивість 4. (Теорема 2.5) Якщо X = (x1, x2, …, xn) — кутова точка багатогранника розв’язків, то вектори в розкладі A1x1 + + A2x2 + … + Anxn = A0, X ≥ 0, що відповідають додатним xj, є лінійно незалежними.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]