Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
xe_k_ekzamenu_-_kopia.doc
Скачиваний:
12
Добавлен:
23.04.2019
Размер:
476.16 Кб
Скачать

54.Механизмы изменчивости организмов

Изменчивость (биологическая) - разнообразие признаков и свойств у особей и групп особей любой степени родства. Изменчивость присуща всем живым организмам, поэтому в природе отсутствуют особи, идентичные по всем признакам и свойствам. Изменчивость можно классифицировать в зависимости от причин, природы и характера изменений, а также целей и методов исследования. Различают :

  • изменчивость наследственную (генотипическую) и ненаследственную (паратипическую)

  • индивидуальную и групповую

  • прерывистую (дискретную) и непрерывную

  • качественную и количественную

  • независимую изменчивость

  • разных признаков и коррелятивную (соотносительную)

  • направленную (определённую, по Ч. Дарвину) и ненаправленную (неопределённую, по Ч. Дарвину)

  • адаптивную (приспособительную) и неадаптивную

Ламарк считал, что их два: во-первых, тенденция организмов к совершенствованию, и, во-вторых, прямое влияние внешней среды. Взгляды Ламарка на механизмы эволюции оказались ошибочными. Пути приспособления живых организмов к окружающей среде и видообразования спустя 50 лет вскрыл Ч. Дарвин. Огромная заслуга Ламарка заключается в том, что он выдвинул в качестве главной причины изменяемости видов условия внешней среды. Теория Ламарка не получила признания современников. В его время наука не была готова к принятию идеи эволюции, сроки эволюционных преобразований, о которых говорил Ламарк,— миллионы лет — казались невообразимыми. Доказательства причин изменяемости видов не были достаточно убедительными. Отводя решающую роль в эволюции прямому влиянию внешней среды, упражнению и неупражнению органов и наследованию приобретенных признаков, Ламарк не мог объяснить возникновение приспособлений, обусловленных мертвыми структурами

Таким образом, хотя представления о неизменности видов не были поколеблены, их сторонникам становилось все труднее объяснять новые и новые факты, открываемые биологами. В первой четверти XIX в. были сделаны большие успехи в сравнительной анатомии и палеонтологии. Большие заслуги в развитии этих областей биологии принадлежат французскому ученому Ж. Кювье. Исследуя строение органов позвоночных животных, он установил, что все органы животного представляют собой части одной целостной системы. Вследствие этого строение каждого органа закономерно соотносится со строением всех других. Ни одна часть тела не может изменяться без соответствующего изменения других частей. Это означает, что каждая часть тела отражает принципы строения всего организма.

55.Генетика – ключевая наука современной биологии. Генная инженерия

Генетика — наука о законах и механизмах наследственности и изменчивости. В зависимости от объекта исследования классифицируют генетику растений, животных, микроорганизмов, человека и другие; в зависимости от используемых методов других дисциплин — молекулярную генетику, экологическую генетику и другие. Идеи и методы генетики играют важную роль в медицине, сельском хозяйстве, микробиологической промышленности, а также в генетической инженерии. Генетика относительно молодая наука. Основоположник – Мендель.

На основе генетических исследований возникли новые области знания (молекулярная биология, молекулярная генетика), соответствующие биотехнологии (такие, как генная инженерия) и методы (например, полимеразная цепная реакция), позволяющие выделять и синтезировать нуклеотидные последовательности, встраивать их в геном, получать гибридные ДНК со свойствами, не существовавшими в природе. Получены многие препараты, без которых уже немыслима медицина. Разработаны принципы выведения трансгенных растений и животных, обладающих признаками разных видов. Стало возможным характеризовать особей по многим полиморфным ДНК-маркерам: микросателлитам, нуклеотидным последовательностям и др.

Генная инженерия — совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы. Генная инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, цитология, генетика, микробиология, вирусология.

Генная инженерия служит для получения желаемых качеств изменяемого или генетически модифицированного организма. В отличие от традиционной селекции, в ходе которой генотип подвергается изменениям лишь косвенно, генная инженерия позволяет непосредственно вмешиваться в генетический аппарат, применяя технику молекулярного клонирования. Примерами применения генной инженерии являются получение новых генетически модифицированных сортов зерновых культур, производство человеческого инсулина путём использования генномодифицированных бактерий, производство эритропоэтина в культуре клеток или новых пород экспериментальных мышей для научных исследований

В применении к человеку генная инженерия могла бы применяться для лечения наследственных болезней. Однако, технически, есть существенная разница между лечением самого пациента и изменением генома его потомков.

Задача изменения генома взрослого человека несколько сложнее, чем выведение новых генноинженерных пород животных, поскольку в данном случае требуется изменить геном многочисленных клеток уже сформировавшегося организма, а не одной лишь яйцеклетки-зародыша. Для этого предлагается использовать вирусные частицы в качестве вектора.

С помощью генотерапии в будущем возможно изменение генома человека. В настоящее время эффективные методы изменения генома человека находятся на стадии разработки и испытаний на приматах.

Хотя и в небольшом масштабе, генная инженерия уже используется для того, чтобы дать шанс забеременеть женщинам с некоторыми разновидностями бесплодия. Для этого используют яйцеклетки здоровой женщины. Ребёнок в результате наследует генотип от одного отца и двух матерей.