
- •4. Основы теории управления материальными ресурсами
- •4.1. Основные законы и правила управления ресурсами
- •4.1.1. Закон ограниченности (исчерпаемости) природных ресурсов («закон Мальтуса»)
- •4.1.2. Правило конкурентного использования ресурсов
- •4.1.3. Закон убывающей отдачи
- •4.1.4. Правило социально-экологического равновесия
- •4.1.5. Закон падения природно-ресурсного потенциала
- •4.1.6. Закон «шагреневой кожи»
- •4.1.7. Закон неустранимости отходов и/или побочных воздействий производства
- •4.1.8. Правила меры преобразования природных систем
- •4.1.9. Качество изделий – важнейший ресурс
- •4.1.10. Закон суммирования ресурсов или интегрального ресурса
- •4.1.11. Закон лимитирующего ресурса
- •4.1.12. Закон согласования управления ресурсами и состояния окружающей среды
- •4.1.13. «Венок законов» б. Коммонера
- •4.2. Проблемы и правила суммирования ресурсов
- •4.3. Природные и техногенные ресурсы
- •4.4. Жизненный цикл изделия
- •4.5. Экобалансы и методика их расчета
- •4.5.1. Принципиальная расчетная схема и исходная информация для составления экобаланса.
- •4.5.2. Пример составления экобаланса
- •4.5.2.1. Расчет количества слябов мнлз
- •4.5.2.2. Расчет количества жидкой стали ккц и необходимого для ее производства первичного металла и лома «со стороны»
- •4.5.2.2.1. Расчет количества жидкой стали для мнлз
- •4.5.2.2.2. Расчет количества ферросплавов
- •4.5.2.2.3. Расчет расхода извести в ккц
- •4.5.2.2.4. Определение состава сталеплавильного шлака
- •4.5.2.2.5. Количество жидкого чугуна, необходимого для производства стали в ккц
- •4.5.2.3 Определение параметров производства первичного металла.
- •4.5.2.3.1 Расчет состава железорудного концентрата.
- •Химический состав исходной руды, концентрата и хвостов, % масс.
- •4.5.2.3.2. Расчет состава агломерата
- •4.5.2.3.3. Расчет параметров производства чугуна
- •4.5.2.4. Расчет количества железорудного концентрата
- •4.5.2.5. Расчет количества угольного концентрата
- •4.5.2.6. Расчет количества электроэнергии и потребности в энергетическом угле
- •4.5.2.7. Расчет потерь металлургических материалов при транспортировке
- •4.5.2.8. Определение показателей добычи железной руды, металлургических углей и флюса
- •4.5.2.9. Определение расхода энергии.
- •4.5.2.10. Расчет баланса железа
- •4.5.2.11. Расчет баланса серы
- •4.5.2.12 Расчет баланса углерода
- •4.5.2.13 Расчет выбросов пыли
- •4.5.2.14. Расчет выбросов газов
- •4.5.2.15 Схема движения основных материалов
- •4.5.3. Показатели, характеризующие структуру экобаланса.
- •4.5.3.1 Показатели расхода природных материальных ресурсов
- •4.5.3.2 Показатели энергосбережения
- •4.5.3.3 Параметры выбросов в окружающую среду
- •4.5.4. Оценка экобалансов производства проката для различных схем подготовки сырья к доменному переделу
- •4.5.5. Оценка эффективности основных технологических схем производства жидкой стали
- •4.5.6. Приложения к расчетам.
- •Продолжение табл. П 2.13
4.5.3.2 Показатели энергосбережения
1)
«удельный расход энергоносителей» на
реализацию рассматриваемой технологической
цепочки, выраженный в единицах условного
топлива, т.у.т./т или кг у.т./т.
2)
общие затраты энергии на производство
проката, ГДж/т. Отметим, что в приводимых
ниже расчетах не учтено использование
ВЭР за исключением доменного и коксового
газов. Поэтому расходы энергии на
передовых предприятиях отрасли будут
на 15-20 % ниже.
3)
«удельный расход углерода», кг/т Fe
проката.
Этот показатель является комплексным. Помимо углерода углей, используемых для коксования, и углерода энергетического топлива, сжигаемого с выделением теплоты, он включает затраты углерода в виде СО2, входящего в состав твердых шихтовых материалов, а также углерода огнеупоров и т.п. Показатель Э3 следует рассматривать совместно с общим балансом углерода технологической цепочки, который дает представление не только об энергозатратах, но и о связанных с ними выбросах во все природные среды, т.к. знание показателя Э3 позволяет рассчитать выбросы СО и СО2. Очевидно, что снижение значения Э3 означает уменьшение воздействия на окружающую природную среду.
4)
- показатель энерго-экологической
эффективности газоочистки. При выборе
этого показателя в качестве одного из
основных исходили из следующих
соображений. Доля электроэнергии,
необходимой для очистки газов (в данном
случае учитывается тонкая очистка газов
от пыли, а также затраты на транспортировку
шлама в ЗШН и обслуживание последнего)
зависит, главным образом, от оборудования
трактов транспортировки газов, применяемой
газо-уплотнительной техники, систем
газоочистки и степени жесткости
природоохранного законодательства.
Этот параметр в меньшей степени связан
с технологией производства собственно
металлургического продукта для
современных предприятий, на которых
достигнуты минимальные параметры
расходов органических топлив всех
видов. Не следует забывать и о том, что
в настоящее время пересматривается
целесообразность глубокой очистки
газов, особенно в случаях, когда для ее
проведения на реальных предприятиях
приходится прибегать к использованию
электроэнергии «со стороны», что приводит
к увеличению общих выбросов в атмосферу
(за счет потерь на преобразование и
транспортировку энергии).
Расход электроэнергии, производимой при сжигании энергетического угля в рассматриваемых примерах равносилен на практике приобретению электроэнергии «на стороне» и показывает, насколько реализация анализируемой технологии зависит от энергетических, а не от металлургических технологий.
Легко заметить, что чем ниже показатель Э4, тем эффективнее в металлургическом отношении рассматриваемая технология и тем вероятней отказ от использования дополнительных источников энергии за счет использования собственных ВЭР (особенно для случаев, когда Э4<1).
5)
,
т/т или кг/т – коэффициент приближения
к идеальной экстракции.
Данный показатель иллюстрирует, насколько анализируемая технология близка к идеалу с точки зрения использования энергии, поскольку расход углерода-восстановителя показывает минимальное количество углерода как химического агента, необходимого для экстракции металла из руды (а в общем случае – из природных или техногенных материалов вообще).
Следует отметить, что в случаях применения в качестве энергетического или восстановительного больших количеств водорода (или других восстановителей, например, при металлотермических процессах) необходима корректировка показателей Э3 и Э5.