
- •1)Случайные события , действия над событиями.
- •2)Общее определение вероятности. Классическое определение вероятности.
- •4).Вероятность суммы событий
- •3). Свойства несовместных событий.
- •5). Условная вероятность. Зависимые и независимые события.
- •6)Формула полной вероятности. Формула Байеса.
- •7) Повторение испытаний. Формула Бернулли.
- •8) Функция Лапсласа. Свойства функции.
- •10). Формула Пуассона.Связь между формулами Пуассона и Бернулли.
- •9) Локальная и интегральная теоремы Лапласа.
- •13).Биноминальное распределение ( Математическое ожидание)
- •14).Биноминальное распределение ( Дисперсия)
- •15).Распределение Пуассона( закон нормировки ,математическое ожидание).
- •16).Распределение Пуассона(дисперсия).
- •17) Функция распределения. Её свойства.
- •18).Непрерывная случайная величина. Плотность распределения н.С.В..
- •19) Характеристики н.С.В. Свойства матем.Ожидания и дисперсии н.С.В.
- •20). Равномерное распределение .Плотность и функция распределения.
- •21). Равномерное распределение . Математическое ожидание и дисперсия.
- •22) Нормальное распределение .Его плотность.
- •23) Нормальное распределение .Его математическое ожидание.
- •24) Нормальное распределение . Дисперсия.
- •25) Вероятность попадания нормально распределённой с.В. В интервал.
- •27) Показательное распределение. Условие нормировки.
- •28) Показательное распределение. Математическое ожидание.
- •29) Показательное распределение. Дисперсия.
- •30) Функции случайных величин. Примеры.
- •31) Функции двух случайных величин. Примеры.
- •32) Системы случайных величин. Примеры
- •34) Основы математической статистики (примеры).
- •35).Статистические оценки неизвестных параметров распределения. Оценка мат.Ожидания и дисперсии.
- •36). Доверительный интервал для оценки математического ожидания при известном .
21). Равномерное распределение . Математическое ожидание и дисперсия.
Например, при поломке часов остановившаяся минутная стрелка будет с одинаковой вероятностью (плотностью вероятности) показывать время, прошедшее от начала данного часа до поломки часов. Это время является случайной величиной, принимающей с одинаковой плотностью вероятности значения, которые не выходят за границы, определенные продолжительностью одного часа. К подобным случайным величинам относится также и погрешность округления. Про такие величины говорят, что они распределены равномерно, т. е. имеют равномерное распределение.
Непрерывная случайная величина Х имеет равномерное распределение на отрезке [а, в], если на этом отрезке плотность распределения вероятности случайной величины постоянна, т. е. если дифференциальная функция распределения f(х) имеет следующий вид:
Иногда это распределение называют законом равномерной плотности. Про величину, которая имеет равномерное распределение на некотором отрезке, будем говорить, что она распределена равномерно на этом отрезке.
Найдем значение постоянной с. Так как площадь, ограниченная кривой распределения и осью Ох, равна 1, то
откуда с=1/(b-a).
Теперь функцию f(x) можно представить в виде
Математическое
ожидания
н.с.в.,
Таким образом, математическое ожидание случайной величины, равномерно распределенной на отрезке [a, b] совпадает с серединой этого отрезка.
Дисперсия
Среднее
квадратическое отклонение:
22) Нормальное распределение .Его плотность.
Нормальный закон распределения является предельным законом, к которому приближаются другие законы распределения при часто встречающихся аналогичных условиях.
Суммируемые случайные величины могут подчиняться каким угодно распределениям, но при этом должно выполняться условие их независимости (или слабой зависимости). При соблюдении некоторых не очень жестких условий указанная сумма случайных величин подчиняется приближенно нормальному закону распределения и тем точнее, чем большее количество величин суммируется.
Ни одна из суммируемых случайных величин не должна резко отличаться от других, т. е. каждая из них должна играть в общей сумме примерно одинаковую роль и не иметь исключительно большую по сравнению с другими величинами дисперсию.
Пример: Размеры изготовленных деталей на станке-автомате несколько отличаются от требуемых. Это отклонение размеров от стандарта вызывается различными причинами, которые более или менее независимы друг от друга. ( неравномерный режим обработки детали; неоднородность обрабатываемого материала; неточность установки заготовки в станке; износ режущего инструмента и деталей станков; упругие деформаций узлов станка; состояние микроклимата в цехе; колебание напряжения в электросети и т. д.) . Таким образом, общее отклонение размера, фиксируемое измерительным прибором, является суммой большего числа отклонений, обусловленных различными причинами. Если ни одна из этих причин не является доминирующей, то суммарное отклонение является случайной величиной, имеющей нормальный закон распределения.
Нормальному закону подчиняются только непрерывные случайные величины .
Непрерывная случайная величина Х имеет нормальное распределение (распределена по нормальному закону), если плотность распределения вероятности f(x) имеет вид
где
а и s—некоторые
постоянные параметры нормального
распределения.
Функция распределения F(x) в рассматриваемом случае принимает вид