
- •1)Случайные события , действия над событиями.
- •2)Общее определение вероятности. Классическое определение вероятности.
- •4).Вероятность суммы событий
- •3). Свойства несовместных событий.
- •5). Условная вероятность. Зависимые и независимые события.
- •6)Формула полной вероятности. Формула Байеса.
- •7) Повторение испытаний. Формула Бернулли.
- •8) Функция Лапсласа. Свойства функции.
- •10). Формула Пуассона.Связь между формулами Пуассона и Бернулли.
- •9) Локальная и интегральная теоремы Лапласа.
- •13).Биноминальное распределение ( Математическое ожидание)
- •14).Биноминальное распределение ( Дисперсия)
- •15).Распределение Пуассона( закон нормировки ,математическое ожидание).
- •16).Распределение Пуассона(дисперсия).
- •17) Функция распределения. Её свойства.
- •18).Непрерывная случайная величина. Плотность распределения н.С.В..
- •19) Характеристики н.С.В. Свойства матем.Ожидания и дисперсии н.С.В.
- •20). Равномерное распределение .Плотность и функция распределения.
- •21). Равномерное распределение . Математическое ожидание и дисперсия.
- •22) Нормальное распределение .Его плотность.
- •23) Нормальное распределение .Его математическое ожидание.
- •24) Нормальное распределение . Дисперсия.
- •25) Вероятность попадания нормально распределённой с.В. В интервал.
- •27) Показательное распределение. Условие нормировки.
- •28) Показательное распределение. Математическое ожидание.
- •29) Показательное распределение. Дисперсия.
- •30) Функции случайных величин. Примеры.
- •31) Функции двух случайных величин. Примеры.
- •32) Системы случайных величин. Примеры
- •34) Основы математической статистики (примеры).
- •35).Статистические оценки неизвестных параметров распределения. Оценка мат.Ожидания и дисперсии.
- •36). Доверительный интервал для оценки математического ожидания при известном .
28) Показательное распределение. Математическое ожидание.
Непрерывная случайная величина Х, функция плотности которой задается выражением называется случайной величиной, имеющей показательное, или экспоненциальное, распределение. В отличие от нормального распределения, показательный закон определяется только одним параметром λ. В этом его преимущество, так как обычно параметры распределения заранее не известны и их приходится оценивать приближенно. Понятно, что оценить один параметр проще, чем несколько.
Найдем функцию распределения показательного закона:
Теперь можно найти вероятность попадания показательно распределенной случайной величины в интервал (а, b): . Значения функции е-х можно найти из таблиц.
Математическое
ожидание
Проводя
интегрирование по частям и учитывая,
что при x→∞ e-x стремиться
к нулю быстрее, чем возрастает любая
степень x ,
находим:
29) Показательное распределение. Дисперсия.
Непрерывная случайная величина Х, функция плотности которой задается выражением называется случайной величиной, имеющей показательное, или экспоненциальное, распределение. В отличие от нормального распределения, показательный закон определяется только одним параметром λ. В этом его преимущество, так как обычно параметры распределения заранее не известны и их приходится оценивать приближенно. Понятно, что оценить один параметр проще, чем несколько.
Найдем функцию распределения показательного закона:
Теперь можно найти вероятность попадания показательно распределенной случайной величины в интервал (а, b):
Значения функции е-х можно найти из таблиц.
Дисперсию
случайной
величины определяем по формуле:
30) Функции случайных величин. Примеры.
Примеры одномерных величин. Число сокращений сердца за одну минуту, полученное при регистрации, - дискретная одномерная величина. Артериальное давление крови, зарегистрированное в данный момент времени, - значение одномерной непрерывной случайной величины.
Если каждому возможному значению случ.величины Х соответствует одно возможное значение случ. величины Y,то Y называют функцией случайного аргумента Х: Y = φ(X).
Выясним, как найти закон распределения функции по известному закону распределения аргумента.
1) Пусть аргумент Х – дискретная случайная величина, причем различным значениям Х соответствуют различные значения Y. Тогда вероятности соответствующих значений Х и Y равны.
Пример 1. Ряд распределения для Х имеет вид: Х 5 6 7 8
р 0,1 0,2 0,3 0,4
Найдем закон распределения функции Y = 2X² - 3: Y 47 69 95 125
р 0,1 0,2 0,3 0,4
(при вычислении значений Y в формулу, задающую функцию, подставляются возможные значения Х).
2) Если разным значениям Х могут соответствовать одинаковые значения Y, то вероятности значений аргумента, при которых функция принимает одно и то же значение, складываются.
Пример 2. Ряд распределения для Х имеет вид: Х 0 1 2 3
р 0,1 0,2 0,3 0,4
Найдем закон распределения функции Y = X² - 2Х: Y -1 0 3
р 0,2 0,4 0,4
(так как Y = 0 при Х = 0 и Х = 2, то р(Y = 0) = р( Х = 0) + р(Х = 2) = 0,1 + 0,3 = 0,4 ).