
- •1. Наука как феномен познания
- •2. Наука и религия
- •3. Естественные и гуманитарные науки
- •4. Технический характер западной культуры
- •5. Значение научно-технической революции
- •6. Логика как процесс мышления
- •7. Математизация науки. Теория фракталов
- •8. Фундаментальные парадигмы естествознания
- •9. Научная теория
- •10. Гносеологические предпосылки науки
- •11. Классификация научных теорий
- •12. Методология и методы научного исследования
- •13. Глобальные проблемы современности
- •14. Возникновение науки в античной культуре
- •15. Наука, вера, знание в условиях средневековья
- •16. Становление и основные характеристики классической науки и научной картины мира в новое время
- •17. Революция в естествознании конца хiх-начала хх вв. Становление идей и методов неклассической науки
- •18. Концептуально-методологические сдвиги в естествознании конца хх в
- •19. Проблема учения о взаимодействии
- •20. Взаимодействие и связь в природе
- •21. Общая характеристика физического взаимодействия
- •22. Фундаментальные физические взаимодействия: гравитационное, электромагнитное, слабое и сильное
- •23. Создание теории великого объединения
- •24. Структурные уровни организации материи
- •25. Структурность и системность материи
- •26. Поле и вещество
- •27. Классификация элементарных частиц
- •28. Проблема взаимодействия мега– и микромира. Будстрап-подход
- •29. Проблема пространства и времени
- •30. Проблема построения единой теории поля
- •31. Универсальные характеристики модели корпускулы
- •32. Масса как мера инертности и гравитации
- •33. Принцип эквивалентности
- •34. Принципы относительности
- •35. Инвариантность и сохранение массы
- •36. Скорость, импульс и кинетическа энергия для медленных движений
- •37. Понятие энтропии
- •38. Релятивистский импульс и полная релятивистская энергия. Энергия покоя
- •39. Классическая механика
- •40. Проблема реальности в квантовой физике
- •41. Детерминизм и причинность в современной физике, динамические и статистические законы
- •42. Современные науки о космосе
- •43. Проблема возникновения вселенной
- •44. Структура вселенной
- •45. Эволюция и строение галактик
- •46. Эволюция звезд
- •47. Солнечная система
- •48. Антропный принцип в современной космологии
- •49. Принцип самоорганизации
- •50. Модель несвободной частицы и законы динамики
- •51. Сохранение механической энерги
- •52. Химические элементы
- •53. Периодическая система элементов д. И. Менделеева
- •54. Химические процессы
- •55. Атом и молекула как целостные объекты химии
- •56. Единство реагентов и продуктов
- •57. Сущность жизни, уровни организации живого
- •58. Представления о целостности объектов в биологии
- •59. Общая характеристика систематики моделей в биологии
- •60. Клетка как фундаментальная модель живой материи на микроуровне
- •61. Прокариоты и эукариоты
- •62. Науки о земле
- •63. Внутреннее строение и история геологического развития земли
- •64. Литосфера как абиотическая основа жизни
- •65. Экологические функции литосферы: ресурсная, геодинамическая, геофизико-геохимическая
- •66. Географическая оболочка земли
- •67. Современные концепции развития геосферных оболочек
- •68. Синергетика
- •69. Кибернетика
- •70. Основные понятия (система, обратная связь, информация). Связь информации и знания
- •71. Проблема создания искусственного интеллекта. Нейронные сети
- •72. Проблема виртуальной реальности
- •73. Современная биология
- •74. История становления и развития биологии
- •75. Проблема целостности в биологии
- •76. Сущность жизни, происхождение жизни, уровни организации живого
- •77. Эволюция форм жизни
- •78. Понятие биосферы, концепции биосферы
- •79. Структура эволюции биосферы
- •80. Экология знания, или глубинная экология
- •81. Экологические проблемы современности
- •82. Генетика
- •83. Евгеника
- •84. Современная антропология
- •85. Взаимосвязь космоса и человека
- •86. Принципы универсального эволюционизма
- •87. Физиология человека
- •88. Путь к единой культуре
- •89. Биоэтика
- •90. Здоровье, здоровый образ жизни, работоспособность, творчество
38. Релятивистский импульс и полная релятивистская энергия. Энергия покоя
В основе теории относительности Эйнштейна лежит два постулата, являющихся обобщением опытных фактов.
1. Принцип относительности – при одинаковых начальных условиях любые физические процессы протекают одинаково в различных инерциальных системах отсчета (ИСО).
2. Принцип постоянства скорости света – скорость света в вакууме не зависит от скорости движения источника и наблюдателя.
Эти два постулата в корне изменили представления о свойствах пространства и времени, которые существовали в физике до создания теории относительности – классической физики. Явления, описываемые теорией относительности, но не объяснимые с позиций классической физики, называются релятивистскими (от лат. relativus – «относительный») явлениями, или эффектами.
Из двух постулатов теории относительности вытекают как следствия выводы о зависимости длительности интервалов времени и длин отрезков от выбора инерциальной системы отсчета.
Зависимость свойств пространства и времени от движения системы отсчета приводит к тому, что сохраняющейся при любых взаимодействиях тел является величина:
называемая релятивистским импульсом, – произведение релятивистской массы тела на скорость его движения. В замкнутой инерциальной системе геометрическая сумма релятивистских импульсов тел остается постоянной при любых взаимодействиях тел этой системы между собой. Классический закон сложения скоростей и классический закон сохранения импульса являются частными случаями универсальных релятивистских законов и выполняются только при значениях скоростей, значительно меньших скорости света в вакууме.
Релятивистская масса тела возрастает с увеличением скорости по закону:
где m0 масса покоя тела, v – скорость его движения. Возрастание массы тела с увеличением скорости приводит к тому, что ни одно тело с массой покоя, не равной нулю, не может достигнуть скорости, равной скорости света в вакууме, или превысить эту скорость.
Закон взаимосвязи массы и энергии. Из экспериментально установленного факта зависимости массы тел от скорости их движения следует, что масса тела и его энергия взаимно связаны. При любых взаимодействиях изменение полной энергии тела равно произведению изменения массы на квадрат скорости света в вакууме: v «с.
?E = m?c2, Это универсальный закон природы, называемый законом взаимосвязи массы и энергии. На основании открытия взаимосвязи массы и энергии тела Альберт Эйнштейн высказал предположение о том, что любое тело, имеющее массу покоя, обладает энергией в соответствии с уравнением E0 = m0c2
Эту энергию он назвал энергией покоя, или собственной энергией тела. Полная энергия движущегося тела равна произведению его массы на квадрат скорости света:
E = mc2
2 Полная энергия движущегося тела складывается из энергии покоя и кинетической энергии, поэтому точное релятивистское выражение для кинетической энергии тела имеет вид: Е = E0 + Еk, Еk = Е– Е0,Еk = mc2– m0c2
39. Классическая механика
Классическая механика изучает механические движения тел со скоростями, много меньшими скорости света в вакууме.
Механическим движением тела называется изменение его положения в пространстве относительно другихтел с течением времени.
Линия, по которой движется точка тела, называется траекторией движения. Длина траектории называется пройденным путем. Вектор, соединяющий начальную и конечную точки траектории, называется перемещением.
Движение тела, при котором все его точки в данный момент времени движутся одинаково, называется поступательным движением. Для описания поступательного движения тела достаточно выбрать одну точку и описать ее движение.
Движение тела, при котором траектории всех точек тела являются окружностями с центрами на одной прямой и все плоскости окружности перпендикулярны этой прямой, называется вращательным движением.
Тело, размерами которого в данных условиях движения можно пренебречь, называют материальной точкой.
Тело можно рассматривать как материальную точку, если его размеры малы по сравнению с расстоянием, которое оно проходит, или по сравнению с расстоянием от него до других тел.
Чтобы описать механическое движение тела (точки), нужно знать его координаты в любой момент времени. Для определения координат материальной точки следует прежде всего выбрать тело отсчета и связать с ним систему координат. В механике часто телом отсчета служит Земля, с которой связывается прямоугольная декартова система координат. Для определения положения материальной точки в любой момент времени необходимо также задать начало отсчета времени. Система координат, тело отсчета, с которым она связана, и указание начала отсчета времени образуют систему отсчета, относительно которой рассматривается движение тела.
Траектория движения тела, пройденный путь и перемещение зависят от выбора системы отсчета, т. е. механическое движение относительно.
Для количественной характеристики процесса движения тела вводится понятие скорости движения.
Мгновенной скоростью поступательного движения тела в момент времени t называется отношение очень малого перемещения ?s к малому промежутку времени ?t, за который произошло это перемещение:
Мгновенная скорость – векторная величина. При последовательном уменьшении длительности промежутка времени направление вектора перемещения приближается к касательной траектории движения, через которую проходит тело в момент времени. Поэтому вектор скорости лежит на касательной к траектории движения тела и направлен в сторону движения тела.
Движение с постоянной по модулю и направлению скоростью называется равномерным прямолинейным движением. При равномерном прямолинейном движении тело движется по прямой и за любые равные промежутки времени проходит одинаковые пути.
Движение, при котором тело за равные промежутки времени совершает неодинаковые перемещения, называют неравномерным движением.
Процесс изменения скорости тела характеризуется ускорением. Ускорением называется векторная величина, равная отношению очень малого изменения вектора скорости к малому промежутку времени, за которое произошло это изменение:
Равноускоренным называется движение с ускорением, постоянным по модулю и направлению: а = const.