Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
подговка к химии!.docx
Скачиваний:
14
Добавлен:
18.04.2019
Размер:
279.31 Кб
Скачать

1.1. Первое начало термодинамики

Энергия неуничтожаема и несотворяема; она может только переходить из одной формы в другую в эквивалентных соотношениях.

Первое начало термодинамики представляет собой постулат – оно не может быть доказано логическим путем или выведено из каких-либо более общих положений.

Первое начало термодинамики устанавливает соотношение между теплотой Q, работой W и изменением внутренней энергии системы ΔU.

Изолированная система

Внутренняя энергия изолированной системы остается постоянной.

U = const или dU = 0

Закрытая система

Изменение внутренней энергии закрытой системы совершается за счет теплоты, сообщенной системе, и/или работы, совершенной над системой.

ΔU =Q +W или dU = δQ + δW

Открытая система

Изменение внутренней энергии открытой системы совершается за счет теплоты, сообщенной системе, и/или работы, совершенной над системой, а также за счет изменения массы системы.

ΔU =Q +W + ΔUm или dU = δQ + δW + iΣUidni

Внутренняя энергия является функцией состояния; это означает, что изменение внутренней энергии ΔU не зависит от пути перехода системы из состояния 1 в состояние 2 и равно разности величин внутренней энергии U2 и U1 в этих состояниях:

ΔU =U2 – U1

Для некоторого процесса:

ΔU = Σ(viUi)npoд – Σ(viUi)исх

1.2. Применение первого начала термодинамики к гомогенным однокомпонентным закрытым системам

Изохорный процесс (V = const; ΔV = 0)

В простейшем случае – полезная работа не совершается.

dU = δQ + δW = δQ – pdV

dU = δQv = CVdT = nCVdT

Все количество теплоты, полученное системой, идет на изменение внутренней энергии.

– теплоемкость при постоянном объеме, т. е. количество теплоты, необходимое для повышения температуры системы на один градус при постоянном объеме. [СV] = Дж/град.

ĈV – мольная теплоемкость при постоянном объеме, Дж/(моль × град). Для идеальных газов:

ĈV = 2/3R – одноатомный газ;

ĈV = 5/2R – двухатомный газ.

Изобарный процесс (Р = const)

dU = δQ + δW = δQ – pdV

δQp = dU + pdV = d(U + pV) = dH

H = U + pV – энтальпия – функция состояния системы.

ΔН = Σ(νiUi)продΣ(νiUi)исх

δQp = dU + pdV =dH = CpdT – тепловой эффект изобарного процесса равен изменению энтальпии системы.

– теплоемкость при постоянном давлении. [С] = Дж/град.

Ĉр – мольная теплоемкость при постоянном давлении, Дж/(моль × град).

Для идеальных газов: Ĉр = ĈV + R; Ĉр, ĈV = [Дж/(моль • К)].

Тепловой эффект (теплота) химической реакции – количество теплоты, выделившейся либо поглотившейся в ходе реакции при постоянной температуре.

Qv = ΔUV

Qp = ΔUp

Зависимость теплового эффекта реакции от температуры. Закон Кирхгоффа

Температурный коэффициент теплового эффекта химической реакции равен изменению теплоемкости системы в ходе реакции.

Закон Кирхгоффа:

Для химического процесса изменение теплоемкости задается изменением состава системы:

ΔСр = Σ(νiCp,i)прод – Σ(νiCp,i)исх или ΔCV = Σ(νiCV,i)прод – Σ(νiCV,i)исх

Интегральная форма закона Кирхгоффа:

ΔНТ2 = ΔНТ1 + ΔСр2 – T1) или ΔUT2 = ΔUTi + ΔСV2 – T1)

1.3. Второе начало термодинамики. Энтропия

1) Теплота не может самопроизвольно переходить от менее нагретого тела к более нагретому.

2) Невозможен процесс, единственным результатом которого является превращение теплоты в работу.

3) Существует некоторая функция состояния системы, названная энтропией, изменение которой следующим образом связано с поглощаемой теплотой и температурой системы:

в неравновесном процессе

в равновесном процессе

S – энтропия, Дж/град,

– приведенная теплота.