Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
utchpos1.doc сопромат.docx
Скачиваний:
16
Добавлен:
17.04.2019
Размер:
2.07 Mб
Скачать

1.1.3. Определение грузоподъемности статически определимой конструкции, работающей на растяжение-сжатие (задача № 3) Условие задачи

Конструкция, состоящая из стержней, соединенных шарнирами, загружена силой F (рис. 1.5). Сечения стержней – из прокатной стали и площади сечений можно найти по таблицам сортамента прокатной стали (например, в [1]). Цель расчета:

  1. определить значение допускаемой нагрузки;

  2. найти перемещение узла С.

Рис. 1.5. Схема конструкции в задаче № 3

Примечание. Если на схеме, выбранной студентом по [4], один стержень показан более жирным, то его следует считать абсолютно жестким, т. е. деформациями этого стержня можно пренебречь.

Решение

Рис. 1.6. План сил

Для определения усилий используем метод сечений. Для этого нарисуем план сил: рассечем деформируемые стержни конструкции и отброшенные части стержней заменим продольными силами N1 и N2 (рис. 1.6). Из уравнений равновесия отсеченной части конструкции найдем продольные силы в стержнях1:

и .

Знак минус показывает, что направление усилия в стержне 2 противоположно показанному на рис. 1.6, т. е. стержень 2 сжат.

Определим напряжения по (1.1) и выберем наиболее напряженный стержень (допустим, что в рассматриваемой задаче это будет стержень 1).

Рис. 1.7. План перемещений

Из условия прочности этого стержня получим значение допускаемой нагрузки:

, .

Найдем перемещение узла С, построив план перемещений (рис. 1.7). Предварительно найдем абсолютные деформации стержней l1 и l2 по формуле (1.3). В рассматриваемой задаче растянутый стержень 1 будет удлиняться, а сжатый стержень 2 – укорачиваться. Для построения плана перемещений нарисуем схему конструкции в масштабе и отложим отрезки l1 и l2 вдоль оси каждого стержня, выбрав масштаб для деформаций так, чтобы картинка плана перемещений была наглядной. В процессе деформации стержни поворачиваются относительно точек А и В по дугам. Из-за малости деформаций эти дуги заменяем касательными, т. е. перпендикулярами к направлениям стержней (отрезки и на рис. 1.7). На пересечении дуг (перпендикуляров к направлениям стержней) находится новое положение узла C после деформации – точка на рис. 1.7. Вертикальное и горизонтальное перемещение узла C допускается определять по масштабу, не делая сложных геометрических выкладок.

Примечание. Если конструкция имеет абсолютно жесткий стержень, то принцип построения плана перемещений тот же. Все точки абсолютно жесткого стержня могут перемещаться только по дугам (перпендикулярам к направлению стержня), поворачиваясь вокруг неподвижного шарнира. Например, если стержень АС на рис. 1.7 считать абсолютно жестким, то точка С переместится в положение и горизонтальное перемещение узла С будет равно нулю.

1.2. Расчет статически неопределимых стержневых систем Основные определения

Статически неопределимая система – система, в которой количество неизвестных (опорных реакций, внутренних усилий) больше числа независимых уравнений статики, составляемых для рассматриваемой системы (конструкции). Таким образом, в статически неопределимой системе невозможно найти все неизвестные, пользуясь только уравнениями равновесия. Разность между количеством неизвестных и числом уравнений статики называется степенью статической неопределимости.

Конструкции, состоящие из стержней, соединенных шарнирами, называются шарнирно-стержневыми. В этих конструкциях есть стержни, которые обеспечивают геометрическую неизменяемость конструкции и при удалении которых система превращается в механизм. Такие стержни будем называть необходимыми. Если же при удалении некоторых стержней геометрическая неизменяемость конструкции не нарушается, то такие стержни назовем лишними. В статически определимой системе есть только необходимые стержни, в статически неопределимой – число лишних стержней равно степени статической неопределимости.

Порядок определения всех неизвестных в статически неопределимых конструкциях (раскрытия статической неопределимости) следующий:

  1. записываем необходимые уравнения равновесия;

  2. составляем уравнения совместности деформаций (геометри-ческие уравнения). Количество уравнений совместности деформаций равно степени статической неопределимости;

  3. записываем физические уравнения;

  4. решая полученную систему уравнений, находим все неизвестные.

Если в качестве физических уравнений используется закон Гука, то такой способ расчета носит название расчета по упругой стадии деформаций. После определения внутренних усилий – продольных сил в стержнях статически неопределимой системы – встает задача обеспечения ее прочности. При расчете по упругой стадии деформаций считается, что предельное состояние конструкции наступает тогда, когда один, наиболее напряженный, стержень переходит в предельное состояние (разрушится или потечет). Поэтому после определения усилий по этому способу находим напряжения в стержнях и выбираем стержень, в котором действует максимальное напряжение. Из условия прочности этого наиболее напряженного стержня либо вычисляем допускаемую нагрузку, либо подбираем сечения стержней. Следует отметить, что в большинстве статически неопределимых конструкций в результате расчета по этому способу только в одном стержне напряжения будут равны допускаемым, остальные же стержни будут недогружены. Достичь равенства напряжений во всех элементах конструкции и, следовательно, добиться выполнения требования, чтобы напряжения во всех стержнях равнялись допускаемым, в общем случае невозможно.

Второй способ расчета статически неопределимых стержневых систем носит название расчета по предельному пластическому состоянию.2 Благодаря наличию лишних стержней в статически неопределимой системе, наступление состояния текучести в одном (наиболее напряженном) стержне еще не приводит к нарушению геометрической неизменяемости всей конструкции. Остальные стержни, оставаясь упругими, препятствуют пластическим деформациям этого стержня. Конструкция продолжает выполнять свое назначение, перейдя из упругой стадии работы в упругопластическую. При увеличении нагрузки в пластическую стадию работы вовлекаются все новые стержни. И только тогда, когда в системе потекут все лишние стержни и хотя бы один необходимый, конструкция превращается в механизм и не может выполнять свои функции. Это состояние и считается предельным при расчете по предельному пластическому состоянию. Таким образом, расчет по предельному пластическому состоянию сводится к следующему:

  1. определяем, сколько стержней должно потечь, чтобы конструкция превратилась в механизм. Дальнейший расчет возможен по двум вариантам:

  • если в предельном состоянии текут все стержни системы, то, составляя уравнения равновесия конструкции в предельном состоянии, находим из него значение предельной нагрузки ;

  • если в предельном состоянии течет только часть стержней, то, не определяя порядка перехода стержней в пластическое состояние, рассматриваем все кинематически возможные варианты предельного состояния конструкции. Находим из уравнений равновесия предельную нагрузку для каждого варианта. Выбираем из всех вариантов минимальное значение предельной нагрузки ;

2) из условия прочности конструкции по предельному состоянию либо вычисляем допускаемую нагрузку, либо подбираем сечения стержней.

Отметим, что расчет по предельному пластическому состоянию является более экономичным, чем расчет по упругой стадии деформаций. Поэтому при сравнении результатов расчета по двум способам должно получиться, что допускаемая нагрузка, найденная расчетом по предельному пластическому состоянию, всегда не меньше нагрузки, полученной расчетом по упругой стадии деформации. Соответственно площади сечений стержней, найденные расчетом по предельному состоянию, должны быть не больше площадей сечений, полученных расчетом по упругой стадии деформаций.

Примеры решения задач

1.2.1. Расчет статически неопределимого составного стержня, работающего на растяжение-сжатие

(задача № 4)

Условие задачи

Рис. 1.8. Схема нагрузки на стержень

в задаче № 4

Стержень переменного сечения с заданным соотношением площадей поперечного сечения , выполненный из разного материала, загружен силой F (рис. 1.8). Между правым концом стержня и стенкой существует зазор .

Требуется:

  1. определить продольные силы, напряжения на каждом участке и проверить прочность стержня от действия заданной нагрузки F.

  2. найти дополнительные напряжения, возникающие в стержне при его нагревании на температуру и проверить прочность стержня от температурного воздействия.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]