Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Алгебра.docx
Скачиваний:
16
Добавлен:
17.04.2019
Размер:
1.73 Mб
Скачать

34) Описание метода

Для системы n линейных уравнений с n неизвестными (над произвольным полем)

с определителем матрицы системы Δ, отличным от нуля, решение записывается в виде

(i-ый столбец матрицы системы заменяется столбцом свободных членов). В другой форме правило Крамера формулируется так: для любых коэффициентов c1, c2, …, cn справедливо равенство:

В этой форме формула Крамера справедлива без предположения, что Δ отлично от нуля, не нужно даже, чтобы коэффициенты системы были бы элементами целостного кольца(определитель системы может быть даже делителем нуля в кольце коэффициентов). Можно также считать, что либо наборы b1,b2,...,bn и x1,x2,...,xn, либо набор c1,c2,...,cn состоят не из элементов кольца коэффициентов системы, а какого-нибудь модуля над этим кольцом. В этом виде формула Крамера используется, например, при доказательстве формулы дляопределителя Грама и Леммы Накаямы.

35) Теорема Кронекера-Капелли

Для того чтобы система m неоднородных линейных уравнений с n неизвестными была совместной, необходимо и достаточно, чтобы 

Доказательство необходимости.

Пусть система (1.13) совместна, то есть существуют такие числа х1=α1х2=α2, …, хn=αn, что

                               (1.15)

Вычтем из последнего столбца расширенной матрицы  ее первый столбец, умноженный на α1, второй – на α2, …, n-ый – умноженный на αn, то есть из последнего столбца матрицы (1.14) следует вычесть левые части равенств (1.15). Тогда получим матрицу

ранг которой в результате элементарных преобразований не изменится и  . Но очевидно,   и, значит, 

Доказательство достаточности.

Пусть   и пусть для определенности не равный нулю минор порядка r расположен в левом верхнем углу матрицы:

Это означает, что остальные строки матрицы   могут быть получены как линейные комбинации первых r строк, то есть m-r строк матрицы можно представить в виде сумм первых r строк, умноженных на некоторые числа. Но тогда первые r уравнений системы (1.13) самостоятельны, а остальные являются их следствиями, то есть решение системы первых r уравнений автоматически является решением остальных уравнений.

Возможны два случая.

1.      r=n. Тогда система, состоящая из первых r уравнений, имеет одинаковое число уравнений и неизвестных и совместна, причем решение ее единственно.

2.      r<n. Возьмем первые r уравнений системы и оставим в левых частях этих уравнений первые r неизвестных, а остальные – перенесем вправо:

               (1.16)

«Свободным» неизвестным xr+1xr+2, …, xn можно придать какие угодно значения. Тогда соответствующие значения получают неизвестные x1x2, …, xr. Система (1.13) и в этом случае совместная, но неопределенная.

Замечание. Отличный от нуля минор порядка r, где r<n, будем называть базисным минором. Неизвестные х1х2, …, хr так же называют базисными, остальные – свободными. Систему (1.16) называют укороченной.

Если свободные неизвестные обозначить хr+1=c1хr+2=c2, …, хn=cn-r, то базисные неизвестные будут от них зависеть, то есть решение системы m уравнений с n неизвестными будет иметь вид

X = (x1(c1, …, cn-r), x2(c1, …, cn-r), …, xr(c1, …, cn-r), c1c2, …, cn-r)T, где значок Т означает транспонирование.

Такое решение системы называется общим.

36)ус-е определенности, неопределенности Система m линейных уравнений с n неизвестными (или, линейная система) в линейной алгебре — это система уравнений вида

Здесь x1x2, …, xn — неизвестные, которые надо определить. a11a12, …, amn — коэффициенты системы — и b1b2, … bm — свободные члены — предполагаются известными. Индексы коэффициентов (aij) системы обозначают номера уравнения (i) и неизвестного (j), при котором стоит этот коэффициент, соответственно[1].

Система (1) называется однородной, если все её свободные члены равны нулю (b1 = b2 = … = bm = 0), иначе — неоднородной.

Система (1) называется совместной, если она имеет хотя бы одно решение, и несовместной, если у неё нет ни одного решения.

Совместная система вида (1) может иметь одно или более решений.

Решения c1(1)c2(1), …, cn(1) и c1(2)c2(2), …, cn(2) совместной системы вида (1) называются различными, если нарушается хотя бы одно из равенств:

c1(1) = c1(2)c2(1) = c2(2), …, cn(1) = cn(2).

Совместная система вида (1) называется определённой, если она имеет единственное решение; если же у неё есть хотя бы два различных решения, то она называется неопределённой

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]