
- •1.Загальна економіко-математична модель задачі лінійного програмування. Допустимий та оптимальний план задачі лінійного програмування.
- •2.Форми запису лінійної задачі оптимізації: в скороченому вигляді, в матричній і векторній формах.
- •3.Геометрична інтерпретація задачі лінійного програмування.
- •4.Симплексний метод із штучним базисом. Ознака оптимальності плану із штучним базисом.
- •5.Алгоритм графічного методу розв’язування задач лінійного програмування.
- •6.Алгоритм розв’язування задачі лінійного програмування симплексним методом.
- •7.Теорема (ознака оптимальності опорного плану задачі лінійного програмування).
- •8.Правила побудови двоїстих задач.
- •9.Теореми двоїстості.
- •10.Приклад економічної інтерпретації пари спряжених задач.
- •11.Економічна інтерпретація двоїстої задачі (на прикладі задачі оптимального використання обмежених ресурсів).
- •12.Визначення за допомогою двоїстих оцінок статус кожного ресурсу прямої задачі та проведення аналізу рентабельності продукції (на прикладі задачі оптимального використання обмежених ресурсів).
- •13.Постановка транспортної задачі.
- •Транспортна задача — це специфічна задача лінійного програмування, застосовувана для визначення найекономічнішого плану перевезення однорідної продукції від постачальників до споживачів.
- •14.Алгоритм розв’язування транспортної задачі методом потенціалів.
- •15.Транспортна задача з додатковими умовами: 1) заборона перевезень від певного постачальника до певного споживача; 2) перевезення за окремими маршрутами строго визначеного обсягу продукції.
- •16.Економічна та математична постановка задачі про розподіл обладнання.
- •17.Економічна та математична постановка задачі про призначення.
- •18.Двохетапна транспортна задача.
- •19.Економічна та математична постановка цілочислової задачі лінійного програмування.
- •20.Загальна характеристика методів розв’язування цілочислових задач лінійного програмування.
- •1) Точні методи:
- •21.Алгоритм розв’язування цілочислових задач лінійного програмування методом Гоморі.
- •22.Алгоритм методу гілок та меж.
- •23.Задача про рюкзак.
- •24.Задача оптимального розкрою матеріалів.
- •25.Задача планування виробничої лінії.
- •26.Економічна та математична постановка задачі дробово-лінійного програмування.
- •27.Геометрична інтерпретація задачі дробово-лінійного програмування.
- •28.Розв’язування дробово-лінійної задачі зведенням до задачі лінійного програмування.
- •29.Постановка нелінійної задачі оптимізації. Геометрична інтерпретація задачі нелінійного програмування.
- •30.Основні труднощі розв’язування нелінійних задач.
- •31.Метод множників Лагранжа розв’язування нелінійних задач оптимізації.
- •32.Економічна сутність задач динамічного програмування.
- •33.Сутність динамічного програмування. Принцип оптимальності.
- •34.Задача про розподіл капіталовкладень між підприємствами.
- •35.Принцип оптимальності р.Белмана.
- •36.Алгоритм розв’язування задач динамічного програмування.
- •37.Основні поняття теорії ігор.
- •38.Класифікація ігор.
- •39.Матричні ігри двох осіб.
- •40.Гра зі змішаними стратегіями.
- •Нехай маємо скінченну матричну гру з платіжною матрицею
- •41.Геометрична інтерпретація гри 22.
- •42.Зведення матричної гри до задачі лінійного програмування.
- •Типові задачі.
- •1. Розв’язування задачі лінійної оптимізації графічним методом.
- •Задача 2.1.
- •2. Знаходження оптимальних планів прямої та двоїстої задачі на основі теорем двоїстості.
- •Задача 3.3.
- •3. Побудова математичних моделей прямої та двоїстої задач та економічний аналіз їх оптимальних планів.
- •4. Розв’язування задачі дробово-лінійного програмування графічним методом.
- •5. Розв’язування задачі нелінійного програмування графічним методом.
- •6. Розв’язування задачі нелінійного програмування методом множників Лагранжа.
5.Алгоритм графічного методу розв’язування задач лінійного програмування.
(2., стр.25).
Алгоритм графічного методу розв’язування задач лінійного програмування складається з розглянутих далі кроків.
1. Будуємо прямі лінії, рівняння яких дістаємо заміною в обмеженнях задачі (2.14) знаків нерівностей на знаки рівностей.
2. Визначаємо півплощини, що відповідають кожному обмеженню задачі.
3. Знаходимо многокутник розв’язків задачі лінійного програмування.
4. Будуємо вектор
,
що задає напрям зростання значень
цільової функції задачі.
5. Будуємо пряму
с1х1 + с2х2
= const, перпендикулярну до вектора
.
6. Переміщуючи
пряму с1х1 + с2х2
= const в напрямі вектора
(для задачі максимізації) або в протилежному
напрямі (для задачі мінімізації),
знаходимо вершину многокутника
розв’язків, де цільова функція досягає
екстремального значення.
7. Визначаємо координати точки, в якій цільова функція набуває максимального (мінімального) значення, і обчислюємо екстремальне значення цільової функції в цій точці.
6.Алгоритм розв’язування задачі лінійного програмування симплексним методом.
(2., стр.45-46 до абзацу “Розглянемо докладніше кожний з етапів алгоритму”).
Симплекс-метод — це поетапна обчислювальна про- цедура, в основу якої покладено принцип послідовного поліпшення значень цільової функції переходом від одного опорного плану задачі лінійного програмування до іншого.
Алгоритм розв’язування задачі лінійного програмування симплекс-методом складається з п’яти етапів:
1. Визначення початкового опорного плану задачі лінійного програмування.
2. Побудова симплексної таблиці.
3. Перевірка опорного плану на оптимальність за допомогою оцінок Zj – Cj. Якщо всі оцінки задовольняють умову оптимальності, то визначений опорний план є оптимальним планом задачі. Якщо хоча б одна з оцінок Zj – Cj не задовольняє умову оптимальності, то переходять до нового опорного плану або встановлюють, що оптимального плану задачі не існує.
4. Перехід до нового опорного плану задачі виконується визначенням розв’язувального елемента та розрахунком нової симплексної таблиці.
5. Повторення дій починаючи з п. 3.
7.Теорема (ознака оптимальності опорного плану задачі лінійного програмування).
(2., стр.47).
Т
еорема
(ознака оптимальності опорного плану).
Опорний план
задачі лінійного програмування є
оптимальним, якщо для всіх
виконується умова
(для
задачі на max)
або
(для
задачі на min)
Якщо для побудови опорного плану було використано метод штучного базису, необхідною умовою оптимальності є також вимога, щоб у процесі розв’язування задачі всі штучні змінні були виведені з базису і дорівнювали нулю.
Значення оцінок
визначають за формулою
або безпосередньо із симплексної таблиці як скалярний добуток векторів-стовпчиків «Сбаз» та «xj» мінус відповідний коефіцієнт Сj. Розраховані оцінки записують в окремий рядок симплексної таблиці, який називають оцінковим.
8.Правила побудови двоїстих задач.
(2., стр.72-73).
Кожній задачі лінійного програмування відповідає двоїста, що формується за допомогою певних правил безпосередньо з умови прямої задачі.
Якщо пряма задача лінійного програмування має вигляд
Z = c1x1 + c2x2 + … + cnxn max
,
то двоїста задача записується так:
F = b1y1 + b2y2 + … + bmym min
за обмежень
.
Порівнюючи ці дві сформульовані задачі, доходимо висновку, що двоїста задача лінійного програмування утворюється з прямої задачі за такими правилами.
1. Кожному обмеженню прямої задачі відповідає змінна двоїстої задачі. Кількість невідомих двоїстої задачі дорівнює кількості обмежень прямої задачі.
2. Кожній змінній прямої задачі відповідає обмеження двоїстої задачі, причому кількість обмежень дорівнює кількості невідомих прямої задачі.
3. Якщо цільова функція прямої задачі задається на пошук найбільшого значення (max), то цільова функція двоїстої задачі — на визначення найменшого значення (min), і навпаки.
4. Коефіцієнтами при змінних в цільовій функції двоїстої задачі є вільні члени системи обмежень прямої задачі.
5. Правими частинами системи обмежень двоїстої задачі є коефіцієнти при змінних в цільовій функції прямої задачі.
6. Матриця
,
що складається з коефіцієнтів при змінних у системі обмежень прямої задачі, і матриця коефіцієнтів в системі обмежень двоїстої задачі
утворюються одна з одної транспонуванням, тобто заміною рядків стовпчиками, а стовпчиків — рядками.
Двоїсті пари задач лінійного програмування бувають симетричні та несиметричні.
У симетричних задачах обмеження прямої та двоїстої задач є нерівностями, а змінні обох задач можуть набувати лише невід’ємних значень.
У несиметричних задачах обмеження прямої задачі можуть бути записані як рівняння, а двоїстої — лише як нерівності. У цьому разі відповідні змінні двоїстої задачі набувають будь-якого значення, не обмеженого знаком.