
- •1.Загальна економіко-математична модель задачі лінійного програмування. Допустимий та оптимальний план задачі лінійного програмування.
- •2.Форми запису лінійної задачі оптимізації: в скороченому вигляді, в матричній і векторній формах.
- •3.Геометрична інтерпретація задачі лінійного програмування.
- •4.Симплексний метод із штучним базисом. Ознака оптимальності плану із штучним базисом.
- •5.Алгоритм графічного методу розв’язування задач лінійного програмування.
- •6.Алгоритм розв’язування задачі лінійного програмування симплексним методом.
- •7.Теорема (ознака оптимальності опорного плану задачі лінійного програмування).
- •8.Правила побудови двоїстих задач.
- •9.Теореми двоїстості.
- •10.Приклад економічної інтерпретації пари спряжених задач.
- •11.Економічна інтерпретація двоїстої задачі (на прикладі задачі оптимального використання обмежених ресурсів).
- •12.Визначення за допомогою двоїстих оцінок статус кожного ресурсу прямої задачі та проведення аналізу рентабельності продукції (на прикладі задачі оптимального використання обмежених ресурсів).
- •13.Постановка транспортної задачі.
- •Транспортна задача — це специфічна задача лінійного програмування, застосовувана для визначення найекономічнішого плану перевезення однорідної продукції від постачальників до споживачів.
- •14.Алгоритм розв’язування транспортної задачі методом потенціалів.
- •15.Транспортна задача з додатковими умовами: 1) заборона перевезень від певного постачальника до певного споживача; 2) перевезення за окремими маршрутами строго визначеного обсягу продукції.
- •16.Економічна та математична постановка задачі про розподіл обладнання.
- •17.Економічна та математична постановка задачі про призначення.
- •18.Двохетапна транспортна задача.
- •19.Економічна та математична постановка цілочислової задачі лінійного програмування.
- •20.Загальна характеристика методів розв’язування цілочислових задач лінійного програмування.
- •1) Точні методи:
- •21.Алгоритм розв’язування цілочислових задач лінійного програмування методом Гоморі.
- •22.Алгоритм методу гілок та меж.
- •23.Задача про рюкзак.
- •24.Задача оптимального розкрою матеріалів.
- •25.Задача планування виробничої лінії.
- •26.Економічна та математична постановка задачі дробово-лінійного програмування.
- •27.Геометрична інтерпретація задачі дробово-лінійного програмування.
- •28.Розв’язування дробово-лінійної задачі зведенням до задачі лінійного програмування.
- •29.Постановка нелінійної задачі оптимізації. Геометрична інтерпретація задачі нелінійного програмування.
- •30.Основні труднощі розв’язування нелінійних задач.
- •31.Метод множників Лагранжа розв’язування нелінійних задач оптимізації.
- •32.Економічна сутність задач динамічного програмування.
- •33.Сутність динамічного програмування. Принцип оптимальності.
- •34.Задача про розподіл капіталовкладень між підприємствами.
- •35.Принцип оптимальності р.Белмана.
- •36.Алгоритм розв’язування задач динамічного програмування.
- •37.Основні поняття теорії ігор.
- •38.Класифікація ігор.
- •39.Матричні ігри двох осіб.
- •40.Гра зі змішаними стратегіями.
- •Нехай маємо скінченну матричну гру з платіжною матрицею
- •41.Геометрична інтерпретація гри 22.
- •42.Зведення матричної гри до задачі лінійного програмування.
- •Типові задачі.
- •1. Розв’язування задачі лінійної оптимізації графічним методом.
- •Задача 2.1.
- •2. Знаходження оптимальних планів прямої та двоїстої задачі на основі теорем двоїстості.
- •Задача 3.3.
- •3. Побудова математичних моделей прямої та двоїстої задач та економічний аналіз їх оптимальних планів.
- •4. Розв’язування задачі дробово-лінійного програмування графічним методом.
- •5. Розв’язування задачі нелінійного програмування графічним методом.
- •6. Розв’язування задачі нелінійного програмування методом множників Лагранжа.
27.Геометрична інтерпретація задачі дробово-лінійного програмування.
(1., стр.301-302).
У разі, коли задача дробово-лінійного програмування містить лише дві змінні, для її розв’язування зручно скористатися графічним методом.
Нехай маємо таку задачу:
(7.4)
за умов:
(7.5)
,
(7.6)
Спочатку, як і для звичайної задачі лінійного програмування будуємо геометричне місце точок системи нерівностей (7.5), що визначає деякий багатокутник допустимих розв’язків.
Допустимо,
що
,
і цільова функція набуває деякого
значення:
.
Після елементарних перетворень дістанемо:
або
. (7.7)
Останнє рівняння описує пряму, що обертається навколо початку системи координат залежно від зміни значень х1 та х2.
Розглянемо кутовий коефіцієнт нахилу прямої (7.7), що виражає цільову функцію:
. (7.8)
Отже, кутовий коефіцієнт являє собою функцію від Z. Для визначення умов зростання (спадання) функції (7.8) дослідимо зміну знака її похідної:
(7.9)
Використовуючи формулу (7.9), можна встановити правила пошуку максимального (мінімального) значення цільової функції:
якщо
, то функція (7.8) є зростаючою, і за збільшення значення Z (значення цільової функції) кутовий коефіцієнт нахилу прямої (7.7) також збільшується. Тобто у разі, якщо
, для відшукання точки максимуму необхідно повертати пряму, що описує цільову функцію, навколо початку системи координат у напрямку проти годинникової стрілки;
якщо
, то функція (7.8) є спадною і за збільшення значення Z (значення цільової функції) кутовий коефіцієнт нахилу прямої (7.7) буде зменшуватись. Тому у разі, якщо
, для відшукання точки максимуму необхідно повертати пряму, що описує цільову функцію, навколо початку системи координат у напрямку за годинниковою стрілкою.
28.Розв’язування дробово-лінійної задачі зведенням до задачі лінійного програмування.
(1., стр.304-305).
Нехай потрібно розв’язати задачу (7.1)—(7.3).
Позначимо
і
введемо заміну змінних
.
Тоді цільова функція (7.1) матиме вигляд:
.
Отримали цільову функцію, що виражена лінійною залежністю.
Оскільки
,
то звідси маємо:
.
Підставимо виражені через нові змінні
значення
в систему обмежень (7.2):
Крім того, з початкової умови
.
Умова (7.3) стосовно невід’ємності змінних набуває вигляду:
.
Виконані перетворення приводять до такої моделі задачі:
Отримали звичайну задачу лінійного програмування, яку можна розв’язувати симплексним методом.
Допустимо, що оптимальний розв’язок останньої задачі існує і позначається:
.
Оптимальні
значення початкової задачі (7.1)—(7.3)
визначають за формулою:
.
29.Постановка нелінійної задачі оптимізації. Геометрична інтерпретація задачі нелінійного програмування.
(1., стр.312-313 до прикладу 8.1).
Нехай для деякої виробничої системи необхідно визначити план випуску продукції за умови найкращого способу використання її ресурсів. Відомі загальні запаси кожного ресурсу, норми витрат кожного ресурсу на одиницю продукції та ціни реалізації одиниці виготовленої продукції. Критерії оптимальності можуть бути різними, наприклад, максимізація виручки від реалізації продукції. Така умова подається лінійною залежністю загальної виручки від обсягів проданого товару та цін на одиницю продукції.
Однак, загальновідомим є факт, що за умов ринкової конкуренції питання реалізації продукції є досить складним. Обсяг збуту продукції визначається передусім її ціною, отже, як цільову функцію доцільно брати максимізацію не всієї виготовленої, а лише реалізованої продукції. Необхідно визначати також і оптимальний рівень ціни на одиницю продукції, за якої обсяг збуту був би максимальним. Для цього її потрібно ввести в задачу як невідому величину, а обмеження задачі мають враховувати зв’язки між ціною, рекламою та обсягами збуту продукції. Цільова функція в такому разі буде виражена добутком двох невідомих величин: оптимальної ціни одиниці продукції на оптимальний обсяг відповідного виду продукції, тобто буде нелінійною. Отже, маємо задачу нелінійного програмування.
Також добре відома транспортна задача стає нелінійною, якщо вартість перевезення одиниці товару залежить від загального обсягу перевезеного за маршрутом товару. Тобто коефіцієнти при невідомих у цільовій функції, що в лінійній моделі були сталими величинами, залежатимуть від значень невідомих (отже, самі стають невідомими), що знову приводить до нелінійності у функціоналі.
І нарешті, будь-яка задача стає нелінійною, якщо в математичній моделі необхідно враховувати умови невизначеності та ризик. Як показник ризику часто використовують дисперсію, тому для врахування обмеженості ризику потрібно вводити нелінійну функцію в систему обмежень, а мінімізація ризику певного процесу досягається дослідженням математичної моделі з нелінійною цільовою функцією.
Загальна задача математичного програмування формулюється так: знайти такі значення змінних xj , щоб цільова функція набувала екстремального (максимального чи мінімального) значення:
(8.1)
за умов:
(
); (8.2)
. (8.3)
Якщо
всі функції
та
,
є лінійними, то це задача лінійного
програмування, інакше (якщо хоча б одна
з функцій є нелінійною) маємо задачу
нелінійного програмування.