
- •1)Числ послед-сти.Предел послед-сти
- •2)Бесконечно малые и бесконечно большие послед-сти
- •3)Теоремы о бессконечномалых послед-стях
- •4)Правила вычисления пределов
- •5)Предел фун-ии.Бесконеч малые и большие фун-ии
- •6)Непрерывность фун-ции
- •7)1И2 замечат пределы
- •8)Классификация точек разрыва фун-ии
- •9)Производная.Геометр смысл
- •10)Уравнение касательной и нормали к кривой
- •11)Производная сложной фун-ии
- •12)Производ обрат фун-ии
- •13)Дифференцируемость фунцииюДифференциал
- •14)Правила дифф.
- •15)Производ параметрически и неявно заданной фун-ции
- •16)Дстаточное условие возраст(убыв) фнн-ции в точке
- •17)Локал ограниченность фун-ции имеющ в точке конеч предел
- •22)Теорема Лагранжа
- •23)Теорема Коши
- •30)Матрицы.Действия
- •33) Опеределители 2го и 3го порядка
- •34)Определители n-го порядка
- •35)Обратная матрица. Решение систем матричным методом
- •36)Теорема о базисном миноре матрицы
- •38)Векторы.Проекция вектора на ось
- •39)Линейная зависимость векторов
- •40)Векторы на плоскости.Базис векторов на плоскости.
- •41)Векторыв в пространстве.Базис векторов в пространстве.
- •42)Декартова с-ма координат на плоскости
- •43)Декартова с-ма координат в пространстве
- •44)Скалярное пр-ние векторов
- •45. Векторное произведение векторов
- •46. Смешанное произведение векторов
- •47)Уравнение прямой на плоскости(параметрическое, каноническое и с угловым коэфф)
- •48)Уравнение прямой на плоскости(с заданным нормальным вектором, общее уравнение и уравнение в отрезках на осях координат)
- •49)Нормированное уравнение прямой на плоскости. Расстояние от точки до плоскости.
- •50)Взаимное расположение прямых на плоскости
- •55) Уравнение эллипса, гиперболы и параболы в полярных координатах.
- •56) Общее уравнение плоскости.
- •57) Нормарованное уравнение плоскости.Расстояние от точки до плоскости
- •58)Взаимное расположение плоскостей
- •59)Уравнение прямой в пространстве
- •60)Расстояние от точки до прямой в пространстве
- •61)Взаимное расположение прямых в пространстве
- •62)Расстояние между скрещивающ прямыми
35)Обратная матрица. Решение систем матричным методом
Обра́тная ма́трица— такая матрица A−1, при умножении на которую исходная матрица A даёт в результате единичную матрицу E: А*А^(-1)=A^(-1)*A=E
Свойства обратной матрицы:
- , где обозначает определитель.
- для любых двух обратимых матриц A и B.
- где * T обозначает транспонированную матрицу.
• Ма́тричный метод решения (метод решения через обратную матрицу) систем линейных алгебраических уравнений с ненулевым определителем состоит в следующем.
Пусть дана система линейных уравнений с n неизвестными (над произвольным полем):
Тогда её можно переписать в матричной форме:
AX = B, где A — основная матрица системы, B и X — столбцы свободных членов и решений системы соответственно:
Умножим это матричное уравнение слева на A − 1 — матрицу, обратную к матрице A: Так как A − 1A = E, получаем X = A − 1B. Правая часть этого уравнения даст столбец решений исходной системы. Условием применимости данного метода (как и вообще существования решения неоднородной системы линейных уравнений с числом уравнений, равным числу неизвестных) является невырожденность матрицы A. Необходимым и достаточным условием этого является неравенство нулю определителя матрицы A:Ма́тричный метод решения (метод решения через обратную матрицу) систем линейных алгебраических уравнений с ненулевым определителем состоит в следующем.Пусть дана система линейных уравнений с n неизвестными (над произвольным полем):
Тогда её можно переписать в матричной форме:
AX = B, где A — основная матрица системы, B и X — столбцы свободных членов и решений системы соответственно:
Умножим это матричное уравнение слева на A − 1 — матрицу, обратную к матрице A: Так как A − 1A = E, получаем X = A − 1B. Правая часть этого уравнения даст столбец решений исходной системы. Условием применимости данного метода (как и вообще существования решения неоднородной системы линейных уравнений с числом уравнений, равным числу неизвестных) является невырожденность матрицы A. Необходимым и достаточным условием этого является неравенство нулю определителя матрицы A:не равен нулю.
Для того, чтобы матрица А имела обратную, необходимо, чтобы ее определитель был отличен от нуля.
36)Теорема о базисном миноре матрицы
В произвольной матрице А каждый столбец (строка) является линейной комбинацией столбцов (строк), в которых расположен базисный минор.Таким образом, ранг произвольной матрицы А равен максимальному числу линейно независимых строк (столбцов) в матрице..Если А- квадратная матрица и detA = 0, то по крайней мере один из столбцов – линейная комбинация остальных столбцов. То же самое справедливо и для строк. Данное утверждение следует из свойства линейной зависимости при определителе равном нулю.
37)Метод Гаусса-метод последовательного исключения переменных. Сначала следует привести систему к треугольному (ступенчатому) виду, а затем ступенчато решить.