
- •Н а вопросы к экзаменационным билетам по предмету «Химия» для профессий «Оператор эвм», «Радиомеханик».
- •2001 – 2002 Учебный год
- •Вопрос №1
- •Периодический закон и периодическая система химических элементов
- •Д. И. Менделеева
- •Значение периодического закона
- •Простые и кратные связи
- •Вопрос №4 Классификация химических реакций Неорганическая химия
- •Вопрос №5 Обратимость химических реакций, химическое равновесие
- •Вопрос №6 Скорость химических реакций
- •Катализ и катализаторы
- •Вопрос №7 Реакции ионного обмена
- •Вопрос №8 Окислительно-восстановительные реакции (овр)
- •Вопрос №9 Оксиды
- •Вопрос №10 Кислоты
- •Классификация
- •Специфические свойства серной кислоты
- •Вопрос №11 Основания
- •Свойства Вопрос №12 Соли
- •Вопрос №13 Электролиз расплавов солей
- •Применение электролиза.
- •Вопрос №14 Металлы
- •Вопрос №15 Железо
- •Физические свойства
- •Применение и биологическая роль железа и его соединений
- •Вопрос №16 Электрохимический ряд металлов
- •Вопрос №17 Коррозия металлов
- •Способы борьбы с коррозией
- •Вопрос №18 Неметаллы
- •Характеристика неметалличности
- •Характеристика атомов-неметаллов 2-го периода
- •Вопрос №19 Сера (s)
- •Вопрос №20 Водородные соединения неметаллов
- •Вопрос №21 Теория химического строения органических веществ а. М. Бутлерова
- •Вопрос №22 Предельные углеводороды (Алканы)
- •Химические свойства
- •Вопрос №25 Диеновые углеводороды (Алкадиены)
- •Получение
- •Применение
- •Природный каучук
- •Физические свойства:
- •Химические свойства
- •Вопрос №29 Предельные одноатомные спирты
- •Физические свойства
- •Химические свойства
- •Физические свойства
- •Химические свойства
- •Применение
- •Вопрос №34 Глюкоза
- •Физические свойства
- •Химические свойства
- •Применение
- •Вопрос №35 Крахмал
- •Применение крахмала
- •Биологическая роль
- •Получение
- •Вопрос №36 Целлюлоза Строение молекулы
- •Физические свойства
- •Химические свойства
- •Применение
- •Вопрос №37 Анилин
- •Физические свойства
- •Важнейшие химические свойства анилина
- •Применение
- •Вопрос №38 Аминокислоты
- •Физические свойства
- •Химические вещества
- •Применение
- •Вопрос №39 Изомерия органических соединений
- •Вопрос №40 Белки
- •Структура белка
- •Физические свойства
- •Химические свойства
- •Функции белков в организме
- •Вопрос №41 (Вопросы №42 – 47) Общая характеристика высоко молекулярных веществ (вмв, полимеры)
- •Вопрос №50 Синтетический каучук
- •Вопрос №51 Металлы и сплавы
- •Вопрос №52 Физические свойства металлов
- •Способы борьбы с коррозией
- •Вопрос №53 Измерение разности потенциалов металлов
- •Вопрос №56 Алюминий
- •Вопрос №57 Медь и благородные металлы
- •Вопрос №58 Металлы побочных подгрупп
- •Вопрос №59 Полупроводники
- •Вопрос №60 Использование неорганических материалов в качестве проводников и диэлектриков
Вопрос №14 Металлы
В периодах и группах периодической системы Д. И. Менделеева существуют закономерности в изменении металлических и неметаллических свойств элементов, можно достаточно определённо указать положение элементов-металлов и элементов-неметаллов в периодической системе. Если провести диагональ от элемента бора B (порядковый номер 5) до элемента астата At (порядковый номер 85), то слева от этой диагонали в периодической системе все элементы являются металлами, а справа от неё элементы побочных подгрупп являются металлами, а элементы главных подгрупп – неметаллами. Элементы расположенные вблизи диагонали (например, Al, Ti, Ge, Sb, Te, As, Nb), обладают двойственными свойствами: в некоторых своих соединениях ведут себя как металлы; в некоторых – проявляют свойства неметаллов.
Все s-элементы (кроме H и He), d-элементы (все элементы побочных подгрупп) и f-элементы (лантаноиды и актиноиды) являются металлами. Среди p-элементов есть и металлы, и неметаллы, число элементов-металлов увеличивается с увеличением номера периода.
Деление на металлы и неметаллы объясняется различием в строении атомов. Рассмотрим, например, строение атомов третьего периода:
Элементы третьего периода: Na, Mg, Al, Si, P, S, Cl, Ar (аргон).
Радиус атома: 0.19; 0.16; 0.143; 0.134; 0.130; 0.104; 0.099.
Число электронов на внешнем слое: 1, 2, 3, 4, 5, 6, 7.
Электроотрицательность: 0.9; 1.2; 1.5; 1.8; 2.1; 2.5; 3.0.
Любой гидроксид содержит гидроксидные группы – OH.
Слева направо:
Радиус атомов уменьшается;
Заряд ядра увеличивается;
Электроотрицательность увеличивается;
Число электронов на внешнем слое увеличивается;
Прочность связи внешних электронов с ядром увеличивается;
Способность атомов отдавать электроны уменьшается.
Поэтому:
Na, Mg, Al – металлы, а Si, P, S, Cl – неметаллы.
Атомы большинства металлов на внешнем электронном слое имеют от 1 до 3 электронов. Исключение: атомы германия Ge, олова Sn, свинца Pb на внешнем электронном слое имеют четыре электрона, атомы сурьмы Sb, висмута Bi – пять, атомы полония Po – шесть. Атомы металла имеют меньший заряд ядра и больший радиус (размер) по сравнению с атомами неметаллов данного периода. Потому прочность связи внешних электронов с ядром в атомах металлов небольшая. Атомы металлов легко отдают валентные электроны и превращаются в положительно заряженные ионы.
Простые вещества, которые образуют элементы-металлы, при обычных условиях являются твёрдыми веществами (кроме ртути). Кристаллическая решётка металлов образуется за счёт металлической связи. Имеющиеся между узлами кристаллической решётки свободные электроны могут переносить теплоту и электрический ток, что является причиной главных физических свойств металлов – высокой электро- и теплопроводности.
Металлическая связь образуется во всех металлах. Это связь, которую осуществляют относительно свободные электроны с положительными ионами металлов в кристаллической решётке. Атомы металла легко отдают валентные электроны и превращаются в положительные ионы. Относительно свободные электроны перемещаются между положительными ионами металла и между ними возникает металлическая связь, то есть электроны как бы цементируют положительные ионы металла в кристаллической решётке.
Атомы металлов более или менее легко отдают электроны, то есть окисляются.
Энергия, которая необходима для отрыва электрона от атома и превращение его в положительно заряженный ион называется энергией ионизации. Металлы характеризуются небольшими величинами энергий ионизации.
Атомы металлов не могут присоединять электроны. Поэтому металлы во всех химических реакциях являются восстановителями и в соединениях имеют только положительные степени окисления. Восстановительная активность различных металлов не одинакова. В периодах слева направо восстановительная активность уменьшается; в главных подгруппах сверху вниз – увеличивается. Восстановительная активность металлов в химических реакциях, которые протекают в водных растворах различных веществ, характеризуется положением металлов в электрохимическом ряду напряжений металлов.
Металлы являются восстановителями и вступают в химические реакции с различными окислителями.