
- •1. Теория я.И.Френкеля о квазикристаллическом строении жидких сплавов и три основных вывода из этой теории. Свойства жидких сплавов с позиции теории я.И.Френкеля.
- •2. Природа кластеров. Неметаллические включения в расплавах и влияние их на свойства жидких расплавов.
- •3. Свойства жидких сплавов: вязкость, плотность. Зависимость их от температуры сплава. Расчет плотности и температуры сплавов
- •4. Смачиваемость и поверхностное натяжение.
- •5. Определение смачиваемости жидким сплавом литейной формы методом «лежащей капли» и регулирование смачиваемости с целью предупреждения пригара на отливках (рисунки, формулы)
- •6. Диффузия . Давление паров металла
- •7.Тепловые свойства металлов. Электрическое сопротивление жидких металлов.
- •8. Термодинамические основы плавильного процесса. Основные законы термодинамики
- •9. Классификация шихтовых материалов, свойства.
- •10. Расчет шихты, понятия о принципах составления шихты , исходные компоненты добавки.
- •12. Основные химические взаимодействия между расплавом, атмосферой, шлаком, футеровкой, флюсами.
- •13. Состояние примесей в сплавах. Выбор способа очистки сплавов от примесей. Комплексные способы очистки. Технологические приемы очистки сплавов (классификация способов, рисунки).
- •14. Рафинирование, раскисление и модифицирование металлических расплавов
- •15. Способы обработки металлических расплавов с целью измельчения структуры в литых изделиях.
- •17. Обосновать возникновение в отливках а) газовой пористости, б) неметаллических включений, несоответствия геометрических размеров.
- •18. Классификация способов заливки форм. Структура потоков расплава. Конфигурация и параметры свободной струи расплава.
- •19. Закон непрерывности потока жидкого сплава в каналах литейной формы; шлакозадержание и тонкая очистка сплавов элементами литниковой системы (формулы, рисунки)
- •20. Обосновать необходимость расчета каждого из элементов литниковой системы, основываясь на функциях каждого элемента и законах течения расплавов (рисунки)
- •21. Основы расчета литниковых систем приближенным универсальным методом
- •22. Давление расплава на стенки формы. Изменение давления в вертикальных и горизонтальных каналах.
- •23.Виды брака отливок, возникающие при неправильном конструировании и расчетах литниковой системы.
- •24. Жидкотекучесть сплавов, связь ее с положением сплава на диаграмме состояния и зависимость от различных факторов со стороны формы и сплава (диаграммы, графики)
- •25. Заполняемость литейных форм жидким расплавом. Зависимость ее от свойств сплава и конструктивных особенностей формы. Мероприятия по улучшению заполняемости форм для тонкостенных отливок
- •26. Взаимодействие металлических расплавов с кислородом, водородом, азотом. Способы дегазации расплавов
- •27. Взаимодействие металлических расплавов со сложными газами. Меры предупреждения газонасыщения
- •28. Состав литейной разовой формы и физико-химические взаимодействия с ней жидких сплавов
- •29. Дефекты отливок связанные с литейной формой.
- •30. Теплофизические и технологические свойства сплавов материалов формы
- •31. Физико-химические процессы на границе «металл-форма» и образование дефектов: пригара; ужимин; наростов.
- •32. Физико-химические процессы на границе «металл-форма» и образование дефектов ситовидной пористости; засоров и неметаллических включений.
- •33. Зависимость структуры металла в отливках от процесса теплопередачи. Регулирование тепловых процессов в литейной форме
- •3 4. Типы литейных форм.
- •35. Методы исследования тепловых процессов в литейной форме.
- •38. Гомогенное и гетерогенное зарождение центров кристаллизации. Объемная и последвательная кристаллизация.
- •39. Последовательная и объемная кристаллизация сплавов. Зависимость заполняемости форм от характера кристаллизации. Теоретические предпосылки и приемы регулирования структуры в литом изделии
- •40. Теоретические предпосылки и технологические приемы регулирования кристаллического строения литого сплава.
- •41. Параметры кристаллизации (лск, цк) и зависимость их от технологических факторов
- •42. Переохлаждение сплавов и зависимость от него формы т размеров зерен.
- •43. Кристаллизация металлов и сплавов. Кластеры и наследственность. Кристаллизация на примесях, активация примесей
- •44. Область затвердевания и формирование структурных зон.
- •45. Двухфазная область кристаллизации и параметры кристаллизации; связь их с энергией Гиббса и диаграммами состояния сплавов
- •46. Дефекты отливок, образующие в процессе кристаллизации.
- •47. Методы исследования затвердевания металла в отливки
- •48. Ликвационные процессы в отливках. Виды дефектов, возникающие в результате ликвации компонентов в сплаве.
- •49. Внутрикристаллическая и зональная ликвация в отливках. Связь ликвационных процессов с условиями затвердевания отливки.
- •50. Технологические приемы, обеспечивающие снижение химической неоднородности по сечению отливки (диаграммы, рисунки)
- •51. Влияние вибрации, перемешивания ультрозвуковой обработки на структуру металла в отливки
- •52. Влияние модифицирования, активации примесей, термовременной обработки, суспензионного литья на структура расплава.
- •53 Влияние структуры металла в отливке на ее физико- механические свойства.
- •54. Теоретическое обоснование и технологические приемы , обеспечивающие формирование мелкозернистой и крупнозернистой структуры.
- •55. Физическая природа объемной усадки металлов и сплавов при затвердевании. Коэффициенты объемной усадки сплавов (формулы, диаграммы, рисунки)
- •56. Механизм образования усадочной пористости в отливках, факторы, влияющие на образование усадочных пор. Технологические приемы, обеспечивающие предупреждение усадочной пористости в отливках
- •57. Зависимость вида усадочных пустот от положения сплава на диаграмме состояния. Влияние характера кристаллизации на механизм образования усадочных пустот
- •58. Технологические приемы, обеспечивающие предупреждение усадочной пористости. Мероприятия по борьбе:
- •59. Механизм образования концентрированной усадочной раковины в отливках и технологические приемы, обеспечивающие такой механизм кристаллизации отливок (диаграммы, рисунки)
- •60. Концентрированная усадочная раковина и рассеянная усадочная пористость.
- •61. Свободная и затрудненная усадка отливок из различных сплавов.
- •62. Питание и затвердевание отливок. Прибыли и основы их расчета
- •63. Направленная кристаллизация. Прибыли, их назначение и основная классификация.
- •64. Факторы учитываемые при расчете и выборе формы и местоположения прибыли . Универсальные методы расчета.
- •66. Напряжения в отливках. Виды напряжения. Меры предупреждения напряжений.
- •68. Трещины в отливках. Виды трещин. Меры предупреждения трещин.
- •69. Факторы, влияющие на возникновение напряжений и трещин в отливках. Механизм образования этих дефектов. Мероприятия по их предупреждению или устранению
- •70. Трещины горячие и холодные. Процесс образования горячих трещин в отливках.
68. Трещины в отливках. Виды трещин. Меры предупреждения трещин.
Трещины представляют собой частичное или полное разрушение сечения отливки, вызванное достижением предела прочности сплава растягивающими напряжениями, развивающимися в результате противодействия тех или иных сил усадке в твердом состоянии.
Горячие трещины имеют черную окисленную поверхность и значительное расхождение между краями; они образуются вблизи температур кристаллизации, когда в средней части отливки имеется жидкий металл. Холодные трещины имеют блестящую поверхность, обычно с цветами побежалости и незначительным расхождением между краями; они образуются при низких температурах (ниже 700° С для стали и чугуна) после полного затвердевания отливок.
Зарождение и развитие трещин в отливках определяются четырьмя группами факторов: 1) податливостью формы, а также ее тешюфизи-ческими свойствами и конструкцией; 2) конструкцией отливки (наличием тепловых узлов и сочетанием различных сечений, способом подвода металла и т.д.); 3) условиями формирования отливки, определяющими последовательность затвердевания ее частей, а также возможность получения заданной макро- и микроструктуры сплава; 4) усадочными, механическим и теплофизкческими свойствами, а также характером его кристаллизации. Технологические условия литья влияют путем изменения кинетики формирования отливки.
Борьба с горячими трещинами большей частью осуществляется технологическим путем
1) увеличение податливости формы за счет применения податливых формовочных смесей (например, введения в них древесных опилок) и создания полостей в тех частях формы, которые располагаются между выступающими частями отливок;
2) упрочнение слабых мест в отливках. Это может достигаться, во-первых, путем установки холодильников, во-вторых, установки ребер жесткости, в-третьих, создания плавных переходов в сопряжениях;
3) устранение выступающих частей в отливках путем изменения конструкции детали или расчленение их на более простые узлы с последующей сваркой (может применяться лишь как крайняя мера);
4) снижение температуры и скорости заливки, если это не вызывает других дефектов в отливке. Ослабление местных разогревов за счет выбора рациональной конструкции литниковых систем;
5) снижение содержания в сплаве примесей, способствующих развитию интервала хрупкости, например, в железных сплавах к таким примесям относятся сера, фосфор, водород.
6) введение небольших технологических добавок, модифицирование - все это может значительно увеличить трещиноустойчивость сплава и резко снизить брак по горячим трещинам без изменения технологии изготовления формы и конструкции отливки или тепловых условий ее формирования
69. Факторы, влияющие на возникновение напряжений и трещин в отливках. Механизм образования этих дефектов. Мероприятия по их предупреждению или устранению
Внутренние напряжения возникают вследствие усадки сплава и действия сил, препятствующих усадке (или уменьшению размеров). В зависимости от сил, препятствующих сокращению размеров отливки (или ее элементов), напряжения условно подразделяются на следующие виды:
- усадочные, когда торможение усадке обусловлено внешними силами (сопротивление формы, стрежней, оснастки и т.д.);
- термические, вызываемые неоднородным охлаждением и, следовательно, смещением усадки во времени различных элементов отливки;
- фазовые, возникающие в отливке в результате протекания фазовых превращений, сопровождающихся изменением объема.
Трещины представляют собой частичное или полное разрушение сечения отливки, вызванное достижением предела прочности сплава растягивающими напряжениями, развивающимися в результате противодействия тех или иных сил усадке в твердом состоянии. Трещины принято делить на горячие и холодные.
Холодные возникают в хрупких сплавах при быстром охлаждении или ударах. Меры: установка холодильников на толстых сечениях, прямой подвод металла к отливке, более внимательное отношение или изменение метода выбивки, очистки, обрубки отливок.
На возможность образования трещин в отливках оказывают влияние следующие факторы:
1) усадка сплава в твердом состоянии; 2) механические свойства (прочность, пластичность и упру гость) сплава при высоких температурах; 3) особенности затвердевания, в наибольшей степени образование («слабых мест» в твердой корке); 4) податливость формы, т.е. сопротивление усадке отливки.
Горячая трещина образуется тогда, когда усадочная деформация превзойдет допустимую деформацию в интервале хрупкости. Если интервал хрупкости захватывает широкую область температур и соответствует низким величинам относительного удлинения, но усадка в этом интервале мала, а тем более, если при этих температурах происходит предусадочное расширение, трещина не образуется. С другой стороны, предотвратить образование трещины может быстрый рост прочности при понижении температуры. Если усадочные напряжения не достигнут предела прочности за весь период охлаждения корочки, возникающей на отливке в начальной стадии затвердевания, горячая трещина уже не образуется. Напряжения в твердой корке, усадка которой тормозится, достигнут максимума в том месте, где корочка имеет минимальную толщину. Такие «слабые места» возникают во входящих углах сопряжений; в них обычно и образуются трещины.
Для снятия напряжений обычно используют термическую обработку различных видов. При отжиге I рода температура нагрева не связана с температурой фазовых превращений. Отжиг стальных и чугунных отливок обычно производится при температуре 450-650 ˚C в течение 2-10 ч. Отливки из алюминиевых сплавов отжигают при 250-350 ˚C. С повышением температуры нагрева скорость релаксации напряжений резко возрастает, и, следовательно, сокращается необходимая длительность отжига. Отжиг II рода связан с фазовой перекристаллизацией сплава, поэтому он наиболее полно снимает напряжения в отливках и одновременно исправляет крупнозернистую зернистую структуру в сталях и некоторых сплавах.
Крупногабаритные чугунные отливки (базовые детали станков и т.п.) для частичного снятия остаточных напряжений и предотвращения коробления иногда подвергаются длительному вылеживаю с течение нескольких месяцев при температуре окружающей среды. Этот процесс обычно называют естественным старением, что не соответствует технологии, принятой в металловедении.
Борьба с горячими трещинами большей частью осуществляется технологическим путем (увеличением податливости форм, изменением конструкции отливки и т.д.), так как марка сплава обусловлена технологическими условиями и не может произвольно изменяться. Однако нельзя недооценивать роль структуры и свойств сплава. Незначительные изменения химического состава (в пределах допуска), снижение содержания вредных примесей, введение небольших технологических добавок, модифицирование – все это может значительно увеличить трещиноустойчивость сплава и резко снизить брак по горячи трещинам без изменения технологии изготовления формы и конструкции отливки или тепловых условий ее формирования.