
- •1 Основные термины и определения тау
- •1.1 Основные понятия
- •1.2 Классификация аср
- •1 По назначению (по характеру изменения задания):
- •2 По количеству контуров:
- •3 По числу регулируемых величин:
- •4 По функциональному назначению:
- •5 По характеру используемых для управления сигналов:
- •6 По характеру математических соотношений:
- •7 По виду используемой для регулирования энергии:
- •8 По наличию внутреннего источника энергии
- •9 По принципу регулирования:
- •2 Характеристики и модели элементов и систем
- •2.1 Основные модели
- •2.2 Статические характеристики
- •2.3 Временные характеристики
- •2.4 Дифференциальные уравнения. Линеаризация
- •2.5 Преобразования Лапласа
- •2.6 Передаточные функции
- •2.6.1 Определение передаточной функции
- •2.6.2 Примеры типовых звеньев
- •2.6.3 Соединения звеньев
- •2.6.4 Передаточные функции аср
- •2.6.5 Определение параметров передаточной функции объекта по переходной кривой
- •2.7 Частотные характеристики
- •2.7.1 Определение частотных характеристик
- •2.7.2 Логарифмические частотные характеристики
- •3 Качество процессов управления
- •3.1 Критерии устойчивости
- •3.1.1 Понятие устойчивости линейных систем
- •3.1.2 Корневой критерий
- •3.1.3 Критерий Стодолы
- •3.1.4 Критерий Гурвица
- •3.1.5 Критерий Михайлова
- •3.1.6 Критерий Найквиста
- •3.2 Показатели качества
- •3.2.1 Прямые показатели качества
- •3.2.2 Корневые показатели качества
- •3.2.3 Частотные показатели качества
- •3.2.4. Интегральные показатели качества
- •3.2.5 Связи между показателями качества
- •4. Настройка регуляторов
- •4.1. Типовые законы регулирования
- •4.2 Определение оптимальных настроек регуляторов
- •Часть 2. Средства автоматизации и управления
- •1 Измерения технологических параметров
- •1.1 Государственная система приборов (гсп)
- •1.2 Основные определения
- •1.3 Классификация контрольно-измерительных приборов
- •1.4 Виды первичных преобразователей
- •1.5 Методы и приборы для измерения температуры
- •1.5.1 Классификация термометров
- •1.5.2 Термометры расширения. Жидкостные стеклянные
- •1.5.3 Термометры, основанные на расширении твердых тел
- •1.5.4 Газовые манометрические термометры
- •1.5.5 Жидкостные манометрические термометры
- •1.5.6 Конденсационные манометрические термометры
- •1.5.7 Электрические термометры
- •1.5.8 Термометры сопротивления
- •1.5.9 Пирометры излучения
- •1.5.10 Цветовые пирометры
- •1.6 Вторичные приборы для измерения разности потенциалов
- •1.6.1 Пирометрические милливольтметры
- •1.6.2 Потенциометры
- •1.6.3 Автоматические электрические потенциометры
- •1.7 Методы измерения сопротивления
- •1.8 Методы и приборы для измерения давления и разряжения
- •1.8.1 Классификация приборов для измерения давления
- •I. По принципу действия:
- •II. По роду измеряемой величины:
- •1.8.2 Жидкостные манометры
- •1.8.3 Чашечные манометры и дифманометры
- •1.8.4 Микроманометры
- •1.8.5 Пружинные манометры
- •1.8.6 Электрические манометры.
- •1.9 Методы и приборы для измерения расхода пара, газа и жидкости
- •1.9.1 Классификация
- •1.9.2 Метод переменного перепада давления
- •1.9.3 Расходомеры постоянного перепада давления
- •1.10.2 Поплавковый метод измерения уровня
- •1.10.3 Буйковые уровнемеры
- •1.10.4 Гидростатические уровнемеры
- •1.10.5 Электрические методы измерения уровня
- •1.10.6 Радиоволновые уровнемеры
- •2 Исполнительные устройства
- •2.1 Классификация исполнительных устройств
- •2.2 Исполнительные устройства насосного типа
- •2.3 Исполнительные устройства реологического типа
- •2.4 Исполнительные устройства дроссельного типа
- •2.5 Исполнительные механизмы
- •3 Функциональные схемы автоматизации
- •3.1 Условные обозначения
- •3.2 Примеры построения условных обозначений приборов и средств автоматизации
- •3.3 Основные принципы построения функциональных схем автоматизации
- •Xe [xt] xiа лампочка.
- •Xe [xt] xirа лампочка.
- •Xe [xt] xiс задвижка.
- •3.4 Примеры схем контроля температуры
- •1 Индикация и регистрация температуры (tir, рисунок 2.35)
- •2 Индикация, регистрация и регулирование температуры с помощью пневматического регулятора (tirс, пневматика, рисунок 2.36)
- •Часть 3. Современные системы управления производством
- •1 Структура современной асутп
- •2 Аппаратная реализация систем управления
- •2.1 Средства измерения технологических параметров
- •2.2 Устройства связи с объектом
- •2.3 Аппаратная и программная платформа контроллеров
- •2.4 Промышленные сети
- •3 Программная реализация систем управления
- •3.1 Виды программного обеспечения
- •3.2 Scada-системы
- •3.3 Работа с субд
- •3.3.1 Принципы работы баз данных
- •3.3.2 Обеспечение безопасности баз данных
- •3.3.3 Операторы языка sql
- •3.4 Методология idef
- •3.4.1 Модели систем
- •3.4.2 Методика построения функциональной модели
- •3.4.3 Методика построения информационной модели
- •3.5 Программные системы управления производством
- •Список литературы
- •Приложение а
- •1 Шина asi
- •2 Шина ControlNet
- •3 Шина Interbus
- •4 Шина can
- •5 Протокол hart
- •6 Шина Foundation Fieldbus
- •7 Протокол lon (lonTalk)
- •8 Шина DeviceNet
- •9 Протокол WorldFip
- •10 Сеть Profibus
- •11 Протокол Ethernet
- •Приложение б
- •Приложение в
- •Приложение г
- •Содержание
- •Часть 1. Теория Автоматического Управления (тау) 4
- •Часть 2. Средства автоматизации и управления 63
- •Часть 3. Современные системы управления производством 104
3.4 Методология idef
3.4.1 Модели систем
Методология IDEF используется преимущественно на верхних уровнях управления в качестве универсального средства для описания выполняемых какой-либо системой функций, структуры обрабатываемой и хранимой информации, а также для анализа динамических свойств данной системы управления [42, 43].
Согласно методологии, модель системы может быть представлена в виде совокупности трех моделей:
- функциональной,
- информационной,
- динамической.
При этом под системой подразумевается как система взаимодействий между приборами, механизмами, технологическими объектами и т.д., так и между людьми в процессе достижения ими определенной цели.
Функциональная модель строится по т.н. методологии IDEF0, более известной как SADT (Structure Analysis and Design Technique). Она дает представления о том, какие функции выполняются (должны выполняться) в рассматриваемой системе, что является исходными данными для них, какой результат выполнения каждой функции, а также каковы причинно-следственные связи между ними.
Информационная модель соответствует методологии IDEF1X, описывает структуру используемой в системе информации и по сути является моделью реляционной базы данных. Методология IDEF1X фактически является стандартом для проектирования СУБД.
Динамическая модель формируется путем преобразования функциональной модели в вид раскрашенных сетей Петри. Используемая методология носит название IDEF/CPN (Colored Petri Nets). Сети Петри предназначены для моделирования динамики дискретных систем и обеспечены мощными средствами для определения их динамических свойств. Анализ систем на сетях Петри позволяет сделать определенные выводы по оптимизации структур моделируемых систем.
3.4.2 Методика построения функциональной модели
Методология IDEF0 (более известная как методология SADT-Structure Analysis and Design Technique) предназначена для представления функций системы и анализа требований к системам и является одной из самых известных и широко используемых методологий проектирования АСУ [29]. В терминах IDEF0 система представляется в виде комбинации блоков и дуг. Блоки используются для представления функций системы и сопровождаются текстами на естественном языке. Дуги представляют множества объектов (как физических, так и информационных) или действия, которые образуют связи между функциональными блоками. Место соединения дуги с блоком определяет тип интерфейса.
Поскольку
блоки символизируют действия, то они,
как правило, подписываются глаголами
или их формами. Дуги же подписываются
существительными.
Рисунок 3.13 – Функциональный блок
Управляющие выполнением функции данные входят в блок сверху, в то время как информация, которая подвергается воздействию функции, показана с левой стороны блока; результаты выхода показаны с правой стороны. Механизм (человек или автоматизированная система), который осуществляет функцию, представляется дугой, входящей в блок снизу (рисунок 3.13).
В основе методологии IDEF0 лежат следующие правила:
Функциональный блок (или Функция) преобразует Входы в Выходы (т.е. входную информацию в выходную), управление определяет, когда и как это преобразование может или должно произойти, исполнители непосредственно осуществляют это преобразование.
С дугами связаны надписи (или метки) на естественном языке (как правило, в виде имен существительных), описывающие данные, которые они представляют.
Дуги показывают, как функции между собой взаимосвязаны, как они обмениваются данными и осуществляют управление друг другом.
Выходы одной функции могут быть Входами, Управлением или Исполнителями для другой.
Дуги могут разветвляться и соединяться.
Функциональный блок, который представляет систему в качестве единого модуля, детализируется на другой диаграмме с помощью нескольких блоков, соединенных между собой интерфейсными дугами.
Эти блоки представляют основные подфункции (подмодули) единого исходного модуля.
Данная декомпозиция выявляет полный набор подмодулей, каждый из которых представлен как блок, границы которого определены интерфейсными дугами.
Каждый из этих подмодулей может быть декомпозирован подобным же образом для более детального представления.