Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пособие по СУХТП.doc
Скачиваний:
10
Добавлен:
15.04.2019
Размер:
4.22 Mб
Скачать

3.1.6 Критерий Найквиста

Данный критерий определяет устойчивость по частотным характеристикам системы. Для построения частотных характеристик, например, АФХ требуется подстановка s = j в передаточную функцию системы, которая, как правило, представляет собой дробно-рациональную функцию. Поэтому данный критерий более сложен для ручного расчета по сравнению с критерием Михайлова.

Последовательность:

1) Определяется передаточная функция разомкнутой системы .

2) Определяется число правых корней m.

3) Подставляется s = j: W(j).

4) Строится АФХ разомкнутой системы.

Для устойчивости АСР необходимо и достаточно, чтобы при увеличении  от 0 до  АФХ W(j) m раз полуохватывала точку (-1; 0), где m - число правых корней разомкнутой системы, т.е. корней si > 0.

Если АФХ проходит через точку (-1; 0), то замкнутая система находится на границе устойчивости (см. рисунок 1.45).

В случае, если характеристическое уравнение разомкнутой системы A(s) = 0 правых корней не имеет (т.е. m = 0), то критерий можно переформулировать: замкнутая система устойчива, если АФХ разомкнутой системы W(j) не охватывает точку (-1; 0), в противном случае система неустойчива; если проходит через нее, то на границе устойчивости.

Пример. Пусть передаточная функция разомкнутой системы имеет вид

.

Для построения АФХ разомкнутой системы делается подстановка s = j* в передаточную функцию:

,

где - действительная часть АФХ,

- мнимая часть,

а = (1 – 2*2)2 + (3,53 – 4*)2 – знаменатель.

Таблица 1.4

ReD()

ImD()

0

5

0

0,4

1,443261

-2,92048

0,8

-0,67933

-3,41604

1,2

-1,84607

1,225475

1,6

-0,25765

0,496282

2

-0,07795

0,222717

2,4

-0,03257

0,120084

0

0

Рисунок 1.46

По полученным формулам строится АФХ (см. таблицу 1.4 и рисунок 1.46). Характеристическое уравнение правых корней не имеет, АФХ охватывает точку (-1; 0), следовательно, замкнутая система неустойчива. 

3.2 Показатели качества

Если исследуемая АСР устойчива, то может возникнуть вопрос о том, насколько качественно происходит регулирование в этой системе и удовлетворяет ли оно технологическим требованиям. На практике качество регулирования может быть определено визуально по графику переходной кривой, однако имеются точные методы, дающие конкретные числовые значения.

Показатели качества разбиты на 4 группы:

1) прямые - определяемые непосредственно по кривой переходного процесса;

2) корневые - определяемые по корням характеристического полинома;

3) частотные - по частотным характеристикам;

4) интегральные - получаемые путем интегрирования функций.

Корневые, частотные и интегральные критерии качества называют также косвенными, поскольку они в отличие от прямых определяют качество системы не непосредственно по переходной кривой, а по косвенным характеристикам (передаточным функциям, ЧХ и т.д.). В этом заключается достоинство данных критериев: они не требуют построения переходной кривой. Однако информация для косвенных критериев на практике не всегда доступна (не всегда известна, например, передаточная функция рассматриваемого объекта).

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.