
- •2 Билет
- •3 Билет
- •4 Билет
- •8 Билет
- •9 Билет.
- •10 Билет
- •11 Билет
- •12 Билет
- •14 Билет
- •15 Билет
- •16 Билет
- •17 Билет
- •Структура
- •Вопрос 20
- •Признаки авитаминоза
- •Причины, вызывающие авитаминоз
- •Вопрос 21
- •Функции
- •[Структура
- •Рекомендуемая суточная доза
- •Вопрос 22
- •Вопрос 23
- •Режим дозирования
- •Фолиевая кислота в пищевых продуктах
- •Биохимия
- •Рекомендуемая суточная норма потребления
- •Фармакология
- •Суточная норма потребления
- •Биологическая роль
- •Биохимическая роль
- •Рекомендуемая суточная норма потребления
- •Вопрос 24
- •Вопрос 25
- •Вопрос 26
- •Медицинское значение
- •Регуляция
- •Вопрос 27
- •Кальцитонин
- •Физиологическая роль
- •Функция
- •Вопрос 28
- •Норадреналин как гормон
- •Свойства
- •Вопрос 29 Аденилатциклазная система
- •Вопрос 30 Классификация ферментов
- •Строение ферментов
- •Вопрос 31 Ферменты
- •Свойства ферментов
- •Механизм действия ферментов
- •Распределение ферментов в организме
- •Номенклатура и классификация ферментов
- •32 Билет
- •33 Билет
- •Метаболизм лабильных фосфатов (макроэргов)
- •4.5. Антропогенный круговорот вещества. Ресурсный цикл
- •Вопрос 34 окисление биологическое
- •Субстратное фосфорилирование
- •Вопрос 35
- •Окислительное декарбоксилирование пировиноградной кислоты
- •Регуляция цикла
- •[Править] Функции
- •Вопрос 36 Глюкоза – это субстрат для получения энергии
- •Глюкоза – это источник оксалоацетата
- •Вопрос 37
- •Физические свойства
- •[Править] Химические свойства
- •Получение
- •Роль в организме
- •Биологический смысл
- •Вопрос 39
- •Вопрос 40
- •Вопрос 41 Кислотно-основное состояние
- •Бикарбонатная буферная система
- •Белковая буферная система
- •Причины ацидоза
- •Классификации ацидоза
- •Классификация
- •Этиология
- •Газовый (респирато́рный) алкалоз
- •Негазовый алкалоз
- •Смешанный алкалоз
- •Патогенез
- •Лечение
- •Вопрос 42
- •Вопрос 43
- •45 Вопрос
- •46 Вопрос
- •47 Вопрос
- •49 Билет
- •Вопрос 51
- •52 Вопрос
- •53 Вопрос
- •Вопрос 55
- •1.3. Использование средств восстановления в системе спортивной тренировки
- •Вопрос 56
- •Вопрос 57
- •Вопрос 58
- •Вопрос 59
- •Вопрос 60
- •Вопрос 61
Вопрос 42
Цикл мочевины или орнитиновый цикл (цикл Кребса-Хензелейта)— последовательность биохимических реакций млекопитающих и некоторых рыб, в результате которой азотсодержащие продукты распада преобразуются в мочевину, которая в свою очередь выделяется почками. В большинстве случаев таким образом происходит превращение аммиака. У птиц и рептилий конечным продуктом выделения является не мочевина, а мочевая кислота. Земноводные и большинство рыб не преобразуют аммиак в другие соединения, поскольку вследствие постоянного контакта с водой происходит быстрый вывод аммиака из организма через жабры или поверхность кожи в результате осмоса.Содержание [убрать]
Биологическое значение
Необходимость в данном цикле реакций возникает вследствие того, что высокие концентрации аммиака, образующиеся в больших количествах в результате деградации нуклеотидов, оказывают угнетающее воздействие на нейроны. Мочевина же, являясь нейтральным соединением с небольшими размерами и высокой растворяемостью в физиологических жидкостях, способна легко проникать через биологические мембраны, легко переноситься кровью и выделяться с мочой.
Локализация
Реакции цикла мочевины локализованы исключительно в клетках печени и протекают частью в митохондриях, а частью в цитозоле, в результате чего возникает необходимость в переносчиках.
Ход протекания реакций
Реакции в митохондрии
Непосредственно перед циклом происходит образование карбомоилфосфата из аммиака, воды и углекислого газа при участии фермента карбомоилфосфат-синтетазы (на схеме не показано). Данная реакция происходит с затратой энергии двух молекул АТФ и образованием двух молекул АДФ.
При участии орнитин-карбомоил-трансферазы (орнитинтранскарбомоилазы) остаток карбомоилфосфата присоединяется к молекуле орнитина, что приводит к образованию молекулы цитрулина, которая переносится в цитозоль.
Реакции в цитоплазме
В цитоплазме цитрулин с аспарагиновой кислотой при участии фермента аргининсукцинат-синтетазы образует совместно аргининосукцинат. В ходе данной реакции расходуется энергия превращения одной молекулы АТФ в АМФ (что эквивалентно превращению двух молекул АТФ в АДФ). Образовавшийся в ходе реакции дифосфат гидролизируется для обеспечения необратимости процесса (на схеме не показано).
Под действием фермента аргининосукцинат-лиазы аргининосукцинат распадается на фумарат и аргинин.
Аргинин в свою очередь гидролизируется при участии аргиназы (аргининогидролазы) с образованием мочевины и орнитина, который сразу же переносится в митохондрию и цикл повторяется вновь.
Суммарное уравнение реакций
2NH3 + CO2 + 3ATФ + аспарагиновая кислота + 3H2O → мочевина + фумарат + 2AДФ +2Фн+ АМФ + ФФн
Энергетический выход цикла составляет затрату четырёх макроэргических связей на одну молекулу мочевины, поскольку пирофосфат далее превращается до фосфата.
Следует заметить, что полученная в процессе реакции аргининосукциназы молекула фумарата снижает энергетическую стоимость цикла. Фумарат, реагируя с молекулой воды в цитозоле, дает малат. Малат же вступает в цикл Кребса и с помощью NAD окисляется. Продуктами этой реакции являются NADH и оксалоацетат. NADH вступает в дыхательную электронтранспортную цепь. Окисление NADH дает примерно 2,5 молекул АТФ, следовательно, стоимость цикла мочевины после этих дополнительных реакций составляет 1,5 молекул АТФ.
Клиническое значение
Нарушения цикла мочевины, например, в силу мутаций генов, кодирующих участвующие в цикле ферменты, приводят к заболеваниям цикла мочевины (англ. Urea cycle disorders). Большинство таких заболеваний приводят к гипераммониемии.