
- •2 Билет
- •3 Билет
- •4 Билет
- •8 Билет
- •9 Билет.
- •10 Билет
- •11 Билет
- •12 Билет
- •14 Билет
- •15 Билет
- •16 Билет
- •17 Билет
- •Структура
- •Вопрос 20
- •Признаки авитаминоза
- •Причины, вызывающие авитаминоз
- •Вопрос 21
- •Функции
- •[Структура
- •Рекомендуемая суточная доза
- •Вопрос 22
- •Вопрос 23
- •Режим дозирования
- •Фолиевая кислота в пищевых продуктах
- •Биохимия
- •Рекомендуемая суточная норма потребления
- •Фармакология
- •Суточная норма потребления
- •Биологическая роль
- •Биохимическая роль
- •Рекомендуемая суточная норма потребления
- •Вопрос 24
- •Вопрос 25
- •Вопрос 26
- •Медицинское значение
- •Регуляция
- •Вопрос 27
- •Кальцитонин
- •Физиологическая роль
- •Функция
- •Вопрос 28
- •Норадреналин как гормон
- •Свойства
- •Вопрос 29 Аденилатциклазная система
- •Вопрос 30 Классификация ферментов
- •Строение ферментов
- •Вопрос 31 Ферменты
- •Свойства ферментов
- •Механизм действия ферментов
- •Распределение ферментов в организме
- •Номенклатура и классификация ферментов
- •32 Билет
- •33 Билет
- •Метаболизм лабильных фосфатов (макроэргов)
- •4.5. Антропогенный круговорот вещества. Ресурсный цикл
- •Вопрос 34 окисление биологическое
- •Субстратное фосфорилирование
- •Вопрос 35
- •Окислительное декарбоксилирование пировиноградной кислоты
- •Регуляция цикла
- •[Править] Функции
- •Вопрос 36 Глюкоза – это субстрат для получения энергии
- •Глюкоза – это источник оксалоацетата
- •Вопрос 37
- •Физические свойства
- •[Править] Химические свойства
- •Получение
- •Роль в организме
- •Биологический смысл
- •Вопрос 39
- •Вопрос 40
- •Вопрос 41 Кислотно-основное состояние
- •Бикарбонатная буферная система
- •Белковая буферная система
- •Причины ацидоза
- •Классификации ацидоза
- •Классификация
- •Этиология
- •Газовый (респирато́рный) алкалоз
- •Негазовый алкалоз
- •Смешанный алкалоз
- •Патогенез
- •Лечение
- •Вопрос 42
- •Вопрос 43
- •45 Вопрос
- •46 Вопрос
- •47 Вопрос
- •49 Билет
- •Вопрос 51
- •52 Вопрос
- •53 Вопрос
- •Вопрос 55
- •1.3. Использование средств восстановления в системе спортивной тренировки
- •Вопрос 56
- •Вопрос 57
- •Вопрос 58
- •Вопрос 59
- •Вопрос 60
- •Вопрос 61
Субстратное фосфорилирование
Субстратное фосфорилирование
(биохимическое)
синтез богатых энергией фосфорных соединений за счёт энергии окислительно-восстановительных реакций Гликолиза (катализируемых фосфоглицеральдегиддегидрогеназой и енолазой) и при окислении α-кетоглутаровой кислоты в Трикарбоновых кислот цикле (под действием α-кетоглутаратдегидрогеназы и сукцинаттиокиназы). Для бактерий описаны случаи С. ф. при окислении пировиноградной кислоты. С. ф., в отличие от фосфорилирования в цепи переноса электронов (см. Окислительное фосфорилирование), не ингибируется «разобщающими» ядами (например, динитрофенолом) и не связано с фиксацией ферментов в мембранах митохондрий. Вклад С. ф. в клеточный фонд АТФ в аэробных условиях значительно меньше, чем вклад фосфорилирования в цепи переноса электронов. См. также Аденозинфосфорные кислоты, Окисление биологическое.
Вопрос 35
Поделиться: |
|
Окислительное декарбоксилирование пировиноградной кислоты
Окисление пирувата до ацетил-КоА происходит при участии ряда ферментов и коферментов, объединенных структурно в мультиферментную систему, получившую название «пируватдегидрогеназный комплекс».
На I стадии этого процесса пируват (рис. 10.8) теряет свою карбоксильную группу в результате взаимодействия с тиаминпирофосфатом (ТПФ) в составе активного центра фермента пируватдегидрогеназы (E1). На II стадии оксиэтильная группа комплекса E1–ТПФ–СНОН–СН3 окисляется с образованием ацетильной группы, которая одновременно переносится на амид липоевой кислоты (кофермент), связанной с ферментом дигидроли-поилацетилтрансферазой (Е2). Этот фермент катализирует III стадию – перенос ацетильной группы на коэнзим КоА (HS-KoA) с образованием конечного продукта ацетил-КоА, который является высокоэнергетическим (макроэргическим) соединением.
На IV стадии регенерируется окисленная форма липоамида из восстановленного комплекса дигидролипоамид–Е2. При участии фермента дигидролипоилдегидрогеназы (Е3) осуществляется перенос атомов водорода от восстановленных сульфгидрильных групп дигидролипоамида на ФАД, который выполняет роль простетической группы данного фермента и прочно с ним связан. На V стадии восстановленный ФАДН2 дигидро-липоилдегидрогеназы передает водород на кофермент НАД с образованием НАДН + Н+.
Процесс окислительного декарбоксилирования пирувата происходит в матриксе митохондрий. В нем принимают участие (в составе сложного мультиферментного комплекса) 3 фермента (пируватдегидрогеназа, ди-гидролипоилацетилтрансфераза, дигидролипоилдегидрогеназа) и 5 кофер-ментов (ТПФ, амид липоевой кислоты, коэнзим А, ФАД и НАД), из которых три относительно прочно связаны с ферментами (ТПФ-E1, ли-поамид-Е2 и ФАД-Е3), а два – легко диссоциируют (HS-KoA и НАД).
Е1 - пируватдегидрогеназа; Е2 - ди-гидролипоилацетилтрансфсраза; Е3 -дигидролипоилдегидрогеназа; цифры в кружках обозначают стадии процесса.
Все эти ферменты, имеющие субъединичное строение, и коферменты организованы в единый комплекс. Поэтому промежуточные продукты способны быстро взаимодействовать друг с другом. Показано, что составляющие комплекс полипептидные цепи субъединиц дигидролипоил-ацетилтрансферазы составляют как бы ядро комплекса, вокруг которого расположены пируватдегидрогеназа и дигидролипоилдегидрогеназа. Принято считать, что нативный ферментный комплекс образуется путем самосборки.
Суммарную реакцию, катализируемую пируватдегидрогеназным комплексом, можно представить следующим образом:
Пируват + НАД+ + HS-KoA –> Ацетил-КоА + НАДН + Н+ + СO2.
Реакция сопровождается значительным уменьшением стандартной свободной энергии и практически необратима.
Образовавшийся в процессе окислительного декарбоксилирования аце-тил-КоА подвергается дальнейшему окислению с образованием СО2 и Н2О. Полное окисление ацетил-КоА происходит в цикле трикарбоновых кислот (цикл Кребса). Этот процесс, так же как окислительное декарбо-ксилирование пирувата, происходит в митохондриях клеток.
Ци́кл трикарбо́новых кисло́т (цикл Кре́бса, цитра́тный цикл) — центральная часть общего пути катаболизма, циклический биохимический аэробный процесс, в ходе которого происходит превращение двух- и трёхуглеродных соединений, образующихся как промежуточные продукты в живых организмах при распаде углеводов, жиров и белков, до CO2. При этом освобождённый водород направляется в цепь тканевого дыхания, где в дальнейшем окисляется до воды, принимая непосредственное участие в синтезе универсального источника энергии — АТФ.
Цикл Кребса — это ключевой этап дыхания всех клеток, использующих кислород, центр пересечения множества метаболических путей в организме. Кроме значительной энергетической роли циклу отводится также и существенная пластическая функция, то есть это важный источник молекул-предшественников, из которых в ходе других биохимических превращений синтезируются такие важные для жизнедеятельности клетки соединения как аминокислоты, углеводы, жирные кислоты и др.
Цикл превращения лимонной кислоты в живых клетках был открыт и изучен немецким биохимиком Хансом Кребсом, за эту работу он (совместно с Ф. Липманом) был удостоен Нобелевской премии (1953 год).
У эукариот все реакции цикла Кребса протекают внутри митохондрий, причём катализирующие их ферменты, кроме одного, находятся в свободном состоянии в митохондриальном матриксе, исключение составляет сукцинатдегидрогеназа, которая локализуется на внутренней митохондриальной мембране, встраиваясь в липидный бислой. У прокариот реакции цикла протекают в цитоплазме.
При работе цикла Кребса окисляются различные продукты обмена, в частности токсичные недоокисленные продукты распада алкоголя, поэтому стимуляцию цикла Кребса можно рассматривать как меру биохимической детоксикации.[1]