Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ШПОРА ПО ЕММ.docx
Скачиваний:
8
Добавлен:
22.12.2018
Размер:
368.41 Кб
Скачать

1.Чи забезпечує принцип оптимальності незалежність наступних розв’зків від здобутих раніше?

Ні не забезпечує. Принцип оптимальності. Для прийняття оптимального рішення на k-му кроці багатокрокового процесу потрібна оптимальність рішень на всіх його попередніх кроках, а сукупність усіх рішень дає оптимальний розв’язок задачі лише в тому разі, коли на кожному кроці приймається оптимальне рішення, що залежить від параметра етапу , визначеного на попередньому кроці.

Цей факт є основою методу динамічного програмування і є сутністю так званого принципу оптимальності Р. Белмана, який формулюється так:

Оптимальний розв’язок багатокрокової задачі має ту властивість, що яким би не був стан системи в результаті деякої кількості кроків, необхідно вибирати управління на найближчому кроці так, щоб воно разом з оптимальним управлінням на всіх наступних кроках приводило до максимального виграшу на всіх останніх кроках, включаючи даний.

Доведемо справедливість такого твердження, міркуючи від супротивного. Нехай маємо задачу на максимізацію функції і вектор є її оптимальним планом (стратегією, поведінкою) n-крокового процесу (n-вимірної задачі) з початковим параметром стану b.

Принцип оптимальності еквівалентний твердженню, що вектор повинен бути оптимальним планом -крокового процесу -вимірної задачі з початковим параметром стану , що дорівнює . Припустимо протилежне, тобто що вектор не є оптимальним планом відповідного процесу, а ним є якийсь інший план . Тоді дістанемо:

, але

, що суперечливо. Отже, принцип оптимальності доведено.

2. Охарактеризуйте головні групи методів розв’язування задач цілочислового програмування.

Для знаходження оптимальних планів задач цілочислового програмування застосовують такі групи методів: 1) точні методи: *методи відтинання; *комбінаторні методи; 2) наближені методи. Основою методів відтинання є ідея поступового «звуження» області допустимих розв’язків розглядуваної задачі. Пошук цілочислового оптимуму починається з розв’язування задачі з так званими послабленими обмеженнями, тобто без урахування вимог цілочисловості змінних. Далі введенням у модель спеціальних додаткових обмежень, що враховують цілочисловість змінних, багатогранник допустимих розв’язків послабленої задачі поступово зменшують доти, доки змінні оптимального розв’язку не набудуть цілочислових значень. До цієї групи належать: *методи розв’язування повністю цілочислових задач; *методи розв’язування частково цілочислових задач. Комбінаторні методи цілочислової оптимізації базуються на ідеї перебору всіх допустимих цілочислових розв’язків, однак, згідно з їх процедурою здійснюється цілеспрямований перебір лише досить невеликої частини розв’язків. Найпоширенішим у цій групі методів є метод гілок і меж. Починаючи з розв’язування послабленої задачі, він передбачає поділ початкової задачі на дві підзадачі через виключення областей, що не мають цілочислових розв’язків, і дослідження кожної окремої частини багатогранника допустимих розв’язків. Для розв’язування задач із бульовими змінними застосовують комбінаторні методи, причому, оскільки змінні є бульовими, то методи пошуку оптимуму значно спрощуються.