Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы by APPLE.doc
Скачиваний:
5
Добавлен:
21.12.2018
Размер:
720.38 Кб
Скачать

Билет№15

1. Потери и КПД ДПТ

В машинах постоянного тока при работе происходит потеря энергии, которая складывается из следующих потерь:

1.         Потери в стали Рст на гистерезис и вихревые токи, возникающие в сердечнике якоря. При вращении якоря машины сталь его сердечника непрерывно перемагничивается. На перемагничивание стали затрачивается мощность, называемая потерями на гистерезис. Одновременно, при вращении якоря в магнитном поле в сердеч­нике его индуктируются вихревые токи. Потери на гистерезис и вихревые токи, называемые потерями в стали, обращаются в тепло и нагревают сердечник якоря.

Потери в стали зависят от магнитной индукции и частоты перемагничивания сердечника якоря.

Магнитная индукция зависит от э. д. с. машины или, иначе, от напряжения, а частота перемагничивания — от скорости вращения якоря. Поэтому при работе машины постоянного тока в режиме ге­нератора или двигателя потери в стали будут постоянными, не за­висящими от нагрузки, если напряжение на зажимах якоря и ско­рость его вращения постоянны.

2.         Потери энергии на нагревание проводов обмоток возбужде­ния и якоря протекающими по ним токами, называемые потерями в меди,— Роб.

Потери в обмотке якоря и в щеточных контактах зависят от тока в якоре, т. е. являются переменными — меняются при изменениях нагрузки.

3.         Механические потери Рмех, представляющие собой потери энергии на трение в подшипниках, трение вращающихся частей о воздух и щеток о коллектор. Эти потери зависят от скорости вра­щения якоря машины. Поэтому механические потери также являются постоянными, не зависящими от нагрузки.

К. п. д. машины в процентах

2. Принцип действия ОАД

При включении двигателя в сеть однофазного переменного тока статорная  обмотка создает не вращающийся, а пульсирующий магнитный поток Ф=Фm sin изменяющийся во времени от +Фm до -Фm.  Ось этого потока неподвижна  в пространстве. Пульсирующий  поток эквивалентен двум одинаковым потокам постоянной величины,  которые вращаются в разные стороны с одной и той же скоростью  .  Каждый  из них равен половине амплитуды пульсирующего потока:

  При неподвижном роторе оба вращающихся поля индуктируют в его обмотке одинаковые токи.  От взаимодействия вращающихся полей с индуктированными токами возникают равные по величине вращающие моменты, действующие в разные стороны и уравновещивающие друг друга.

Результирующий момент оказывается равным нулю, и ротор не может прийти во вращение.  Опыт показывает, что если ротор привести во вращение в каком-либо направлении, то в дальнейшем он без посторонней внешней силы достигнет установившейся скорости  n, определяемой нагрузкой на валу двигателя.

3. Опыт х.х. и к.з. 3 фазного трансформатора

При опыте холостого хода трансформатора его вторичная обмотка разомкнута и тока в этой обмотке нет  (/2—0).

Если первичную обмотку трансформатора включить в сеть источника электрической энергии переменного тока, то в этой об­мотке будет протекать ток холостого хода I0, который представляет собой малую ве­личину по сравнению с номинальным то­ком трансформатора. В трансформаторах больших мощностей ток холостого хода может достигать значений порядка 5— 10% номинального тока. В трансформато­рах малых мощностей этот ток достигает значения 25—30% номинального тока. Ток   холостого   хода I0 создает   магнитный поток в магнитопроводе трансформатора. Для возбуждения магнитного потока трансформатор потребляет реактивную мощ­ность из сети. Что же касается активной мощности, потребляемой трансформатором при холостом ходе, то она расходуется на покры­тие потерь мощности в магнитопроводе, обусловленных гистерезисом и вихревыми токами.

Так  как реактивная мощность при холостом ходе трансформа­тора значительно больше активной мощности, то коэффициент мощности cos φ его весьма мал и обычно равен 0,2-0,3. По данным опыта холостого хода трансформатора определяется сила то­ка холостого хода I0, потери в стали сердечника Рст и коэффициент транс­формации К.

При опыте короткого замыкания вторичная обмотка трансформатора замкнута накоротко, т. е. напряжение на зажи­мах вторичной обмотки равно нулю. Первичная обмотка включает­ся в сеть с таким пониженным напряжением, при котором токи в обмотках равны номинальным. Такое пониженное напряжение называется напряжением короткого замыкания и обычно равно 5,5% от номинального значения.

По данным опыта короткого замыкания определяется напряже­ние короткого замыкания uк %, его активная uа % и реактивная ux % составляющие, потери на нагревание обмоток трансформато­ра Pобм при номинальной нагрузке и активное, реактивное и пол­ное сопротивления трансформатора при коротком замыкании rk, xk  и zk.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]