Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
UP-TIPiS-Krasnova.doc
Скачиваний:
52
Добавлен:
17.12.2018
Размер:
2.07 Mб
Скачать

Частные случаи агрегата

Кусочно-марковский агрегат – агрегат, процессы в котором являются обрывающими марковскими процессами. Любой агрегат можно свести к марковскому. Кусочно-непрерывный агрегат в промежутках между подачей сигналов функционирует как автономный агрегат. Кусочно-линейный агрегат: dcv(t)/dt = F(v)(cv).

Агрегативное описание функционирования системы даст универсальные и различные математические модели. Функционирование элементов может быть сведено к агрегативному представлению. Для создания агрегативной модели ИС необходимо:

1. Разработать агрегативную модель элементарной системы.

2. Построить модель сопряжённого агрегата.

Представление реальных систем в виде агрегатов неоднозначно, вследствие неоднозначности выбора фазовых переменных.

Контрольные вопросы

  1. Что дает агрегативное описание функционирования системы?

  2. Опишите агрегат как случайный процесс.

  3. Опишите функционирование системы в терминах операторов входов-выходов.

  4. Как создается агрегативная модель информационной системы?

  5. Что характеризуют фазовые переменные агрегативной модели?

3.4. Математическое и имитационное моделирование динамики сложной информационной системы

Системная динамика – направление в изучении сложных систем, исследующее их поведение во времени и в зависимости от структуры элементов системы и взаимодействия между ними. В том числе: причинно-следственных связей, петель обратных связей, задержек реакции, влияния среды и других. Особенное внимание уделяется компьютерному моделированию таких сис­тем.

Философия системной динамики базируется на предположении, что поведение (или история развития во времени) организации главным образом определяется ее информационно-логической структурой. Она отражает не только физические и технологические аспекты производственных процессов, но, что гораздо важнее, политику и традиции, которые явно или неявно определяют процесс принятия решений в организации. Другой аспект философии системной динамики заключается в предположении, что организация более эффективно представляется в терминах лежащих в ее основе потоков, нежели в терминах отдельных функций. Потоки людей, денег, материалов, заявок и оборудования, а также интегрированных потоков информации могут быть выявлены во всех организациях.

Методология системной динамики использует модифицированные методы представления потоковых диаграмм, математического и имитационного моделирования для визуального представления текущей ситуации. Как потоковые диаграммы, так и системы уравнений выражают управленческие связи c помощью двух категорий: накопителей и потоков. Накопители представляют собой такие объекты реального мира, в которых сосредотачиваются некоторые ресурсы: знания (идеи), фонды, источники рабочей силы и т.п. Потоки – это все активные компоненты системы: потоки усилий (попыток), информационные потоки, расходные платежи и т.п.

Если система управления представима в виде сети накопителей и потоков, то соответствующая модель динамики системы может быть реализована в виде компьютерной программы. С помощью такой программы можно провести экспериментальное тестирование предлагаемых изменений управленческой политики.

Методология системной динамики включает качественную и количественную стадии. На качественной (квалитативной) стадии исследователь описывает модель и определяет характеристики взаимодействий. На количественной стадии, в ходе компьютерной симуляции, исследователь определяет, насколько верна его модель и тестирует свои гипотезы о поведении системы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]