Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы по физике .господи помоги сдать зачёт.docx
Скачиваний:
11
Добавлен:
17.12.2018
Размер:
741.72 Кб
Скачать

[Править]Осевой момент инерции

Осевые моменты инерции некоторых тел.

Моментом инерции механической системы относительно неподвижной оси («осевой момент инерции») называется величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси:

,

где:

  • mi — масса i-й точки,

  • ri — расстояние от i-й точки до оси.

Осевой момент инерции тела Ja является мерой инертности тела во вращательном движениивокруг оси подобно тому, как масса тела является мерой его инертности в поступательном движении.

,

где:

  • dm = ρdV — масса малого элемента объёма тела dV,

  • ρ — плотность,

  • r — расстояние от элемента dV до оси a.

Если тело однородно, то есть его плотность всюду одинакова, то

[Править]Теорема Гюйгенса-Штейнера

Основная статьяТеорема Штейнера

Момент инерции твёрдого тела относительно какой-либо оси зависит не только от массы, формы и размеров тела, но также от положения тела по отношению к этой оси. Согласно теореме Штейнера (теореме Гюйгенса-Штейнера), момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела Jc относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния d между осями:

Если  — момент инерции тела относительно оси, проходящей через центр масс тела, то момент инерции относительно параллельной оси, расположенной на расстоянии  от неё, равен

,

где  — полная масса тела.

Например, момент инерции стержня относительно оси, проходящей через его конец, равен:

[Править]Осевые моменты инерции некоторых тел

Моменты инерции однородных тел простейшей формы относительно некоторых осей вращения

Тело

Описание

Положение оси a

Момент инерции Ja

Материальная точка массы m

На расстоянии r от точки, неподвижная

Полый тонкостенный цилиндр или кольцо радиуса r и массы m

Ось цилиндра

Сплошной цилиндр или диск радиуса r и массы m

Ось цилиндра

Полый толстостенный цилиндр массы m с внешним радиусом r2 и внутренним радиусом r1

Ось цилиндра

Сплошной цилиндр длины l, радиуса r и массы m

Ось перпендикулярна к цилиндру и проходит через его центр масс

Полый тонкостенный цилиндр (кольцо) длины l, радиусаr и массы m

Ось перпендикулярна к цилиндру и проходит через его центр масс

Прямой тонкий стержень длины l и массы m

Ось перпендикулярна к стержню и проходит через его центр масс

Прямой тонкий стержень длины l и массы m

Ось перпендикулярна к стержню и проходит через его конец

Тонкостенная сфера радиуса r и массы m

Ось проходит через центр сферы

Шар радиуса r и массы m

Ось проходит через центр шара

Конус радиуса r и массы m

Ось конуса

18.?

17. Теоре́ма Гю́йгенса — Ште́йнера, или просто теорема Штейнера (названа по имени швейцарского математика Якоба Штейнера и голландского математика, физика и астрономаХристиана Гюйгенса): момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела JC относительно параллельной ей оси, проходящей через центр масс тела, и произведения массы тела m на квадрат расстояния d между осями:

где

JC — известный момент инерции относительно оси, проходящей через центр масс тела,

J — искомый момент инерции относительно параллельной оси,

m — масса тела,

d — расстояние между указанными осями.

[править]Вывод

Момент инерции, по определению:

Радиус-вектор  можно расписать как разность двух векторов:

,

где  — радиус-вектор расстояния между старой и новой осью вращения. Тогда выражение для момента инерции примет вид:

Вынося за сумму , получим:

Поскольку старая ось проходит через центр масс, то суммарный импульс тела будет равен нулю:

Тогда:

Откуда и следует искомая формула:

,

где JC — известный момент инерции относительно оси, проходящей через центр масс тела.

[править]Пример

Момент инерции стержня относительно оси, проходящей через его центр и перпендикулярной стержню, (назовём её осью C) равен

Тогда согласно теореме Штейнера его момент относительно произвольной параллельной оси будет равен

где d — расстояние между искомой осью и осью C. В частности, момент инерции стержня относительно оси, проходящей через его конец и перпендикулярной стержню, можно найти положив в последней формуле d = L / 2: