Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3764745_patrikeev_answers.doc
Скачиваний:
0
Добавлен:
16.12.2018
Размер:
543.23 Кб
Скачать
  1. Опишите технологические и социальные достижения первой и второй научно-технической революций

Первая научно-технической революция была революция XVII века, ознаменовавшая собой становление классического естествознания, характеризующееся следующими моментами:

а) идеалом было построение абсолютно истинной картины природы;

б) поиск очевидных, наглядных, «вытекающих из опыта» принципов, на базе которых можно строить теории, объясняющие и предсказывающие опытные факты;

в) все процессы объяснялись механическими причинами. Эта эпоха была временем господства механики во всех отраслях знаний.

В основе науки этого времени лежали разработанные И. Ньютоном методы классической механики и математического естествознания в целом, базировавшегося на достижениях математики Р. Декарта, Г. Лейбница и др.

Вторая научно - техническая революция ознаменовалась радикальными переменами в относительно устойчивой системе оснований естествознания в конце XVIII - первой половине XIX века. Механическая картина мира утрачивает статус общенаучной. Произошёл переход к новому состоянию естествознания – дисциплинарно организованной науке, в которой можно выделить следующие моменты:

а) в биологии, химии и других областях знания формируются специфические картины реальности, несводимые к механической;

б) происходит дифференциация дисциплинарных идеалов и норм исследования.

Первая и вторая глобальные революции в естествознании протекали как формирование и развитие классической науки и ее стиля мышления.

  1. Какие ограничения и почему накладываются на размеры «квантовых» систем.

Квантовое ограничение

Необычным свойством электронного «облака» является его неподатливость. Если мы со всех сторон начнём сдавливать это облако, стремясь уменьшить его размеры, то оно станет оказывать всё большее и большее давление. Т. е попытка ограничить размеры вероятного положения электрона приводит в пределе к бесконечному сопротивлению. Можно представить себе этот процесс, словно электрон начинает метаться по облачку, и чем меньше его размеры, тем сильнее он мечется, т. е. тем больше его кинетическая энергия.

Таким образом, квантовое ограничение сопровождается как увеличением минимальной энергии запертого электрона, так и дополнительным квантованием энергетических уровней, соответствующих его возбужденному состоянию. Это приводит к тому, что электронные свойства наноразмерных структур отличаются от известных объемных свойств материала, из которого они сделаны.

БИЛЕТ № 8

1. В чем состоят основные базовые операции технологии изготовления интегральных схем.

Интегра́льная( engl. Integrated circuit, IC, microcircuit, microchip, silicon chip, or chip), (микро)схе́ма (ИС, ИМС, м/сх), чип, микрочи́п (англ. chip — щепка, обломок, фишка) — микроэлектронное устройство — электронная схема произвольной сложности, изготовленная на полупроводниковом кристалле (или плёнке) и помещённая в неразборный корпус. Часто под интегральной схемой (ИС) понимают собственно кристалл или плёнку с электронной схемой, а под микросхемой (МС) — ИС, заключённую в корпус. В то же время выражение «чип компоненты» означает «компоненты для поверхностного монтажа» в отличие от компонентов для традиционной пайки в отверстия на плате. Поэтому правильнее говорить «чип микросхема», имея в виду микросхему для поверхностного монтажа. В настоящий момент (2006 год) большая часть микросхем изготавливается в корпусах для поверхностного монтажа.

Классификация

Степень интеграции

В СССР были предложены следующие названия микросхем в зависимости от степени интеграции (в скобках количество элементов для цифровых схем):

МИС — малая интегральная схема (до 100 элементов в кристалле);

СИС — средняя интегральная схема (до 1000 элементов в кристалле);

БИС — большая интегральная схема (до 10000 элементов в кристалле);

СБИС — сверхбольшая интегральная схема (до 1 миллиона элементов в кристалле);

УБИС — ультрабольшая интегральная схема (до 1 миллиарда элементов в кристалле);

ГБИС — гигабольшая интегральная схема (более 1 миллиарда элементов в кристалле).

В настоящее время название ГБИС практически не используется (например, последние версии процессоров Pentium 4 содержат пока несколько сотен миллионов транзисторов), и все схемы с числом элементов, превышающим 10000, относят к классу СБИС, считая УБИС его подклассом.

Технология изготовления

Полупроводниковая микросхема — все элементы и межэлементные соединения выполнены на одном полупроводниковом кристалле (например, кремния, германия, арсенида галлия).

Плёночная микросхема — все элементы и межэлементные соединения выполнены в виде плёнок:

толстоплёночная интегральная схема;

тонкоплёночная интегральная схема.

Гибридная микросхема — кроме полупроводникового кристала содержит несколько бескорпусных диодов, транзисторов и(или) других электронных компонентов, помещённых в один корпус.

Технологический процесс

При изготовлении микросхем используется фотопроцесс, при этом схему формируют на подложке, обычно из диоксида кремния, полученной термических оксидированием кремния. Ввиду малости размера элементов микросхем, от использования видимого света и даже ближнего ультрафиолета при засветке давно отказались. В качестве характеристики технологического процесса производства микросхем указывают ширину полосы фотоповторителя и, как следствие, размеры транзисторов (и других элементов) на кристалле. Этот параметр, однако, находится во взаимозависимости c рядом других производственных возможностей: чистотой получаемого кремния, характеристиками инжекторов, методами вытравливания и напыления.

В 70-х годах ширина процесса составляла 2-8 мкм, в 80-х была улучшена до 0,5-2 мкм. Некоторые экспериментальные образцы рентгеновского диапазона обеспечивали 0,18 мкм.

В 90-х годах из-за нового витка "войны платформ" экспериментальные методы стали внедряться в производство и быстро совершенствоваться. В начале 90-х процессоры (например ранние Pentium и Pentium Pro) изготавливали по технологии 0,5-0,6 мкм. Потом их уровень поднялся до 0,25-0,35 мкм. Следующие процессоры (Pentium 2, K6-2+, Athlon) уже делали по технологии 0,18 мкм.

В конце 90-х фирма Texas Instruments создала новую ультрафиолетовую технологию с шириной полосы около 0,08 мкм. Но достичь её в массовом производстве не удавалось вплоть до недавнего времени. Она постепенно продвигалась к нынешнему уровню совершенствуя второстепенные детали. По обычной технологии удалось обеспечить уровень производства вплоть до 0,09 мкм.

Новые процессоры (сперва это был Core 2 Duo) делают по новой УФ-технологии 0,065 мкм. Есть и другие микросхемы давно достигшие и превысившие данный уровень (в частности видеопроцессоры и flash-память фирмы Samsung - 0,040 мкм). Тем не менее дальнейшее развитие технологии вызывает всё больше трудностей. Обещания фирмы Intel по переходу на уровень 0,030 мкм. уже к 2006 году так и не сбылись.

Сейчас альянс ведущих разработчиков и производителей микросхем работает над тех. процессом 0,032 мкм.

Основные операции изготовления ИС

  • Резка слитков кремния на пластины ( wafers)

  • Защитное окисление кремния-SiO2

  • Покрытие оснований фоточувствительными плёнками

  • Фотолитография по Si и SiO2

  • Травление Si и SiO2 в изотропных и анизотропных травителях

  • Диффузия примесей (образование p-n переходов)

  • Металлизация (изготовление разводки и контактных площадок)

  • Метрика и резка пластин на чипы

  • Сборка ИС в корпус, метрика и каталогизация ИС

(Время цикла изготовления ИС – 50 суток)

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]