
Добавил:
Upload
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз:
Предмет:
Файл:вышка.docx
X
- •20) Уравнение линии на плоскости. Уравнение прямой на плоскости, заданной точкой и направляющим вектором. Векторно-параметрическое и параметрическое уравнение прямой.
- •21) Каноническое уравнение прямой на плоскости. Уравнение прямой с угловым коэффициентом. Уравнение прямой, заданной двумя точками. Прямая в «отрезках».
- •22) Уравнение прямой, проходящей через данную точку перпендикулярно данному вектору. Общее уравнение прямой, частные случаи.
- •23) Взаимное расположение прямых на плоскости. Угол между прямыми.
- •24) Нормальное уравнение прямой на плоскости. Расстояние от точки до прямой.
- •25) Кривые второго порядка на плоскости. Эллипс: определение, вывод канонического уравнения, исследование формы, эксцентриситет, фокальные радиусы, дирекрисы, вершины.
- •26) Гипербола: определение, каноническое уравнение, асимптоты, эксцентриситет, директрисы, вершины.
- •27) Парабола: определение, вывод канонического уравнения. Расположение параболы в декартовой системе координат, координаты фокуса и уравнение директрисы. Частные случаи.
- •28) Плоскость в пространстве r3. Уравнения плоскости: по точке и нормальному вектору, общее уравнение плоскости, частные случаи.
- •29) Векторное уравнение плоскости. Уравнение плоскости, проходящей через три заданные точки. Плоскость в «отрезках». Нормальное уравнение плоскости.
- •30) Угол между двумя плоскостями. Взаимное положение плоскостей в пространстве. Расстояние от точки до плоскости.
- •31) Прямая в пространстве r3. Векторное уравнение прямой. Канонические и параметрические уравнения прямой. Уравнения прямой, проходящей через две точки. Общее уравнение прямой.
- •32) Взаимное расположение прямой и плоскости в пространстве r3. Угол между прямой и плоскостью. Условие принадлежности прямой плоскости.
- •33)Поверхности второго порядка: эллипсойды, гиперболойды, парабалойды. Свойства.
- •34) Поверхности второго порядка: конусы, цилиндры. Свойства.
- •35) Полярная система координат и ее связь с декартовой. Примеры кривых в полярной системе координат.
- •36) Цилиндрическая и сферическая системы координат и их связь с декартовой системой координат.
- •37) Высказывания и логические операции над ними. Предикаты, кванторы и связь между ними. Булева алгебра и ее приложения.
- •38) Алгебраические системы. Множества и операции над ними. Терминология и символика теории множеств.Числовые множества. Множества действительных чисел.Верхняя и нижняя границы множеств.
- •39) Множества комплексных чисел. Изображение комплексных чисел на плоскости. Алгебраическая форма записи комплексного числа. Операции над комплексными числами в алгебраической форме.
- •40) Тригонометрическая форма записи комплексного числа. Операции над комплексными числами в тригонометрической форме.
40) Тригонометрическая форма записи комплексного числа. Операции над комплексными числами в тригонометрической форме.
x = rcos
, y = rsin
Z
=
x + iy = rcos
+ irsin
=
r (cos
)
– тригонометрическая
форма записи,
где
r=|Z|=
– модуль
комплексного числа
=
Аrg Z
– аргумент
комплексного числа
|Z|0
Аrg Z принимает множество значений, отличающихся на 2п
-пАrg
Z
п
Операции над комплексными числами в тригонометрической форме:
Пусть
Z1
= r1(cos1
+ isin
1)
Z2
= r2(cos2
+ isin
2)
-
Z1 * Z2 = r1*r2(cos(
) +isin(
))
-
-
n = rn(cos(n
) + isin(n
)) – формула Муавра
-
, k=0,1,…(n-1)
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]