- •§ 8.1. Склад і характеристики ядра 84
- •§ 8.2. Дефект маси та енергія зв’язку ядра. Ядерні сили 86
- •§ 4.1. Магнітне поле і його характеристики. Дія магнітного поля на контур зі струмом. Принцип суперпозиції. Класифікація магнетиків
- •§ 4.2. Закон Біо – Савара – Лапласа. Магнітне поле прямолінійного та колового струмів
- •§ 4.3. Циркуляція вектора напруженості магнітного поля. Вихровий характер магнітного поля. Поле довгого соленоїда
- •§ 4.4. Дія магнітного поля на струм; сила Ампера. Магнітна взаємодія струмів
- •§ 4.5. Сила Лоренца. Рух електричних зарядів в магнітному полі
- •§ 4.6. Магнітний потік. Теорема Гауса для магнітного поля
- •§ 4.7. Робота переміщення провідника та контура зі струмом в магнітному полі
- •§ 4.8. Явище електромагнітної індукції. Закон Фарадея. Правило Ленца
- •§ 4.9. Індуктивність контура. Явище самоіндукції. Енергія магнітного поля
- •§ 4.10. Магнітне поле в речовині
- •§ 4.11. Вихрове електричне поле
- •§ 4.12. Струми зміщення. Теорема про циркуляцію вектора напруженості магнітного поля (закон повного струму)
- •§ 4.13. Система рівнянь Максвелла. Електромагнітне поле
- •§ 5.1. Гармонічні коливання. Диференціальне рівняння гармонічних коливань та його розв’язок. Амплітуда, фаза, частота, період коливань
- •§ 5.2. Математичний маятник
- •§ 5.3.Фізичний маятник
- •§ 5.4. Енергія гармонічних коливань
- •§ 5.5. Додавання однаково направлених гармонічних коливань однакової частоти
- •§ 5.6. Додавання взаємно перпендикулярних коливань
- •§ 5.7. Згасаючі коливання
- •§ 5.8. Вимушені коливання
- •§ 5.9. Поняття хвилі, рівняння хвилі. Поздовжні і поперечні хвилі. Фронт хвилі і хвильові поверхні. Довжина хвилі, хвильове число, фазова швидкість.
- •§ 5.10. Хвильове рівняння
- •§ 5.11. Енергія пружної хвилі
- •§ 5.12. Групова швидкість і дисперсія хвиль
- •§ 5.13. Стоячі хвилі
- •§ 5.14. Електромагнітні коливання
- •§ 5.15. Вимушені електромагнітні коливання
- •§ 5.16. Електромагнітні хвилі. Шкала електромагнітних хвиль
- •§ 5.17. Енергія електромагнітних хвиль. Вектор Умова-Пойнтінга
- •Розділ 6. Оптика.
- •§ 6.1. Елементи геометричної оптики: закони відбивання і заломлення світла; тонкі лінзи
- •§ 6.2. Монохроматичні світлові хвилі
- •§ 6.3. Інтерференція світла
- •§ 6.4. Інтерференція світла на тонких плівках
- •§ 6.5. Дифракція світла. Принцип Гюйгенса - Френеля. Метод зон Френеля
- •§ 6.6. Дифракція Фраунгофера
- •§ 6.7. Дифракція рентгенівських променів
- •§ 6.8. Поляризація світла. Типи і способи поляризації
- •§ 6.9. Інтерференція поляризованих променів. Обертання площини поляризації
- •§ 6.10. Дисперсія світла
- •§ 6.11. Квантова природа випромінювання. Теплове випромінювання
- •§ 6.12. Фотоефект
- •§ 6.13. Тиск світла
- •§ 6.14. Ефект Комптона
- •§ 6.15. Гальмівне рентгенівське випромінювання
- •§ 7.1. Ядерна модель атома. Борівський воднеподібний атом. Спектральні серії
- •§ 7.2. Корпускулярно-хвильовий дуалізм матерії; гіпотеза де Бройля. Співвідношення невизначеностей Гайзенберга
- •§ 7.3. Хвильова функція та її зміст. Рівняння Шредінгера
- •§ 7.4. Частинка в одновимірній прямокутній потенціальній ямі. Проходження частинки через потенціальний бар’єр
- •§ 7.5. Квантовий лінійний гармонічний осцилятор
- •§ 7.6. Воднеподібні атоми в квантовій механіці. Квантові числа
- •§ 7.7. Магнітний момент атомів. Досліди Штерна і Герлаха. Власний момент електрона (спін). Ферміони і бозони
- •§ 7.8. Принцип Паулі. Стани електронів в складних атомах
- •§ 7.9. Характеристичне рентгенівське випромінювання
- •§ 7.10. Енергія молекул. Молекулярні спектри
- •§ 7.11. Люмінесценція
- •§ 7.12. Поглинання, спонтанне і вимушене випромінювання. Квантові генератори
- •§ 7.13. Теплові коливання кристалічної гратки і теплоємність твердих тіл
- •§ 7.14. Елементи зонної теорії твердих тіл
- •§ 7.14.2. Розподіл частинок з напівцілим спіном (ферміонів), в т.Ч. І електронів, за енергіями описується квантовою функцією розподілу Фермі-Дірака
- •§ 7.15. Електропровідність металів і напівпровідників
- •§ 7.16. Напівпровідникові структури
- •§ 8.1. Склад і характеристики ядра
- •§ 8.2. Дефект маси та енергія зв’язку ядра. Ядерні сили
- •§ 8.3. Радіоактивність
- •§ 8.4. Ядерні реакції
- •§ 8.5. Елементарні частинки та фундаментальні взаємодії
§ 6.14. Ефект Комптона
Досліджуючи
розсіяння рентгенівських променів в
кристалах, Комптон (1923 р.) встановив, що
в розсіяному випромінюванні, крім
незміщеної компоненти з довжиною хвилі
,
існує зміщена компонента з довжиною
хвилі
.
При розсіянні легкими атомами (
В) практично все розсіяне випромінювання
має зміщену довжину хвилі. По мірі
збільшення атомного номера все більша
частина випромінювання розсіюється
без зміни довжини хвилі.
Досліди Комптона
показали, що різниця
не залежить від довжини хвилі
падаючого випромінювання і природи
розсіючої речовини, а визначається лише
величиною кута розсіяння :
,
де стала величина
– комптонівська довжина хвилі для
електрона.
Е
Рис.
6.30
і енергію
,
з вільним електроном, який перебуває у
стані спокою (енергія спокою
,
– маса спокою електрона). Фотон, зітнувшись
з електроном, передає йому частину своєї
енергії та імпульсу. При цьому змінюється
напрямок його руху (фотон розсіюється,
рис. 6.30) Зменшення енергії фотона означає
збільшення його довжини хвилі.
Нехай імпульс та
енергія розсіяного фотона дорівнюють
і
.
Електрон внаслідок взаємодії отримує
імпульс
і енергію
.
При кожному такому зіткненні виконуються закони збереження енергії та імпульсу. Згідно із законом збереження енергії
.
Звідси
. (6.70)
Згідно із законом збереження імпульсу
. (6.71)
За теоремою косинусів для трикутника імпульсів рівняння (6.71) перепишеться у скалярному вигляді як
. (6.72)
Прирівнюючи праві частини рівнянь (6.70) і (6.72), знайдемо:
.
Оскільки
,
,
то
,
або
(6.73)
Формула (6.73) добре узгоджується з результатами експериментальних досліджень ефекту Комптона. При цьому знайдено вираз комптонівської довжини хвилі для довільної частинки, яка приймає участь у розсіюванні.
Таким чином, світло одночасно проявляє властивості неперервних електромагнітних хвиль (інтерференція, дифракція) і властивості дискретних фотонів (фотоефект, ефект Комптона). Воно являє собою діалектичну єдність цих протилежних властивостей. В прояві хвильових і корпускулярних властивостей світла є закономірність: при малих довжинах хвиль більш чітко проявляються квантові властивості, і, навпаки, у довгохвильового випромінювання основну роль відіграють його хвильові характеристики. Можна зробити висновок, що корпускулярні і хвильові властивості світла не виключають, а, навпаки, взаємно доповнюють одна одну. Зв’язок між корпускулярними (імпульс фотона) і хвильовими (довжина хвилі) характеристиками світла забезпечується формулою
, (6.74)
де
– довжина хвилі, p
– імпульс фотона, h
– стала Планка.
Квадрат амплітуди світлової хвилі в деякій точці простору є мірою імовірності попадання фотонів в цю точку. Корпускулярні властивості зумовлені тим, що енергія, імпульс і маса випромінювання локалізовані в дискретних частинках – фотонах, хвильові – статистичними закономірностями розподілу фотонів у просторі.
