
- •§ 8.1. Склад і характеристики ядра 84
- •§ 8.2. Дефект маси та енергія зв’язку ядра. Ядерні сили 86
- •§ 4.1. Магнітне поле і його характеристики. Дія магнітного поля на контур зі струмом. Принцип суперпозиції. Класифікація магнетиків
- •§ 4.2. Закон Біо – Савара – Лапласа. Магнітне поле прямолінійного та колового струмів
- •§ 4.3. Циркуляція вектора напруженості магнітного поля. Вихровий характер магнітного поля. Поле довгого соленоїда
- •§ 4.4. Дія магнітного поля на струм; сила Ампера. Магнітна взаємодія струмів
- •§ 4.5. Сила Лоренца. Рух електричних зарядів в магнітному полі
- •§ 4.6. Магнітний потік. Теорема Гауса для магнітного поля
- •§ 4.7. Робота переміщення провідника та контура зі струмом в магнітному полі
- •§ 4.8. Явище електромагнітної індукції. Закон Фарадея. Правило Ленца
- •§ 4.9. Індуктивність контура. Явище самоіндукції. Енергія магнітного поля
- •§ 4.10. Магнітне поле в речовині
- •§ 4.11. Вихрове електричне поле
- •§ 4.12. Струми зміщення. Теорема про циркуляцію вектора напруженості магнітного поля (закон повного струму)
- •§ 4.13. Система рівнянь Максвелла. Електромагнітне поле
- •§ 5.1. Гармонічні коливання. Диференціальне рівняння гармонічних коливань та його розв’язок. Амплітуда, фаза, частота, період коливань
- •§ 5.2. Математичний маятник
- •§ 5.3.Фізичний маятник
- •§ 5.4. Енергія гармонічних коливань
- •§ 5.5. Додавання однаково направлених гармонічних коливань однакової частоти
- •§ 5.6. Додавання взаємно перпендикулярних коливань
- •§ 5.7. Згасаючі коливання
- •§ 5.8. Вимушені коливання
- •§ 5.9. Поняття хвилі, рівняння хвилі. Поздовжні і поперечні хвилі. Фронт хвилі і хвильові поверхні. Довжина хвилі, хвильове число, фазова швидкість.
- •§ 5.10. Хвильове рівняння
- •§ 5.11. Енергія пружної хвилі
- •§ 5.12. Групова швидкість і дисперсія хвиль
- •§ 5.13. Стоячі хвилі
- •§ 5.14. Електромагнітні коливання
- •§ 5.15. Вимушені електромагнітні коливання
- •§ 5.16. Електромагнітні хвилі. Шкала електромагнітних хвиль
- •§ 5.17. Енергія електромагнітних хвиль. Вектор Умова-Пойнтінга
- •Розділ 6. Оптика.
- •§ 6.1. Елементи геометричної оптики: закони відбивання і заломлення світла; тонкі лінзи
- •§ 6.2. Монохроматичні світлові хвилі
- •§ 6.3. Інтерференція світла
- •§ 6.4. Інтерференція світла на тонких плівках
- •§ 6.5. Дифракція світла. Принцип Гюйгенса - Френеля. Метод зон Френеля
- •§ 6.6. Дифракція Фраунгофера
- •§ 6.7. Дифракція рентгенівських променів
- •§ 6.8. Поляризація світла. Типи і способи поляризації
- •§ 6.9. Інтерференція поляризованих променів. Обертання площини поляризації
- •§ 6.10. Дисперсія світла
- •§ 6.11. Квантова природа випромінювання. Теплове випромінювання
- •§ 6.12. Фотоефект
- •§ 6.13. Тиск світла
- •§ 6.14. Ефект Комптона
- •§ 6.15. Гальмівне рентгенівське випромінювання
- •§ 7.1. Ядерна модель атома. Борівський воднеподібний атом. Спектральні серії
- •§ 7.2. Корпускулярно-хвильовий дуалізм матерії; гіпотеза де Бройля. Співвідношення невизначеностей Гайзенберга
- •§ 7.3. Хвильова функція та її зміст. Рівняння Шредінгера
- •§ 7.4. Частинка в одновимірній прямокутній потенціальній ямі. Проходження частинки через потенціальний бар’єр
- •§ 7.5. Квантовий лінійний гармонічний осцилятор
- •§ 7.6. Воднеподібні атоми в квантовій механіці. Квантові числа
- •§ 7.7. Магнітний момент атомів. Досліди Штерна і Герлаха. Власний момент електрона (спін). Ферміони і бозони
- •§ 7.8. Принцип Паулі. Стани електронів в складних атомах
- •§ 7.9. Характеристичне рентгенівське випромінювання
- •§ 7.10. Енергія молекул. Молекулярні спектри
- •§ 7.11. Люмінесценція
- •§ 7.12. Поглинання, спонтанне і вимушене випромінювання. Квантові генератори
- •§ 7.13. Теплові коливання кристалічної гратки і теплоємність твердих тіл
- •§ 7.14. Елементи зонної теорії твердих тіл
- •§ 7.14.2. Розподіл частинок з напівцілим спіном (ферміонів), в т.Ч. І електронів, за енергіями описується квантовою функцією розподілу Фермі-Дірака
- •§ 7.15. Електропровідність металів і напівпровідників
- •§ 7.16. Напівпровідникові структури
- •§ 8.1. Склад і характеристики ядра
- •§ 8.2. Дефект маси та енергія зв’язку ядра. Ядерні сили
- •§ 8.3. Радіоактивність
- •§ 8.4. Ядерні реакції
- •§ 8.5. Елементарні частинки та фундаментальні взаємодії
§ 6.9. Інтерференція поляризованих променів. Обертання площини поляризації
6
Рис.6.24
Рис.6.25
Хоча ці хвилі після
пластинки – когерентні, однак вони не
можуть давати інтерференцію через те,
що вони поляризовані у взаємно
перпендикулярних площинах. Для
спостереження інтерференції цих хвиль
необхідно за допомогою аналізатора
виділити з них складові, які поляризовані
в одній площині і тому здатні інтерферувати.
Таким чином, якщо
,
спостерігається максимум інтенсивності
поляризованого світла. Якщо
,
спостерігається мінімум інтенсивності
поляризованого світла.
І
Рис.6.26
,
де
– нормальна напруга. Таким чином,
помістивши деформоване тіло між
поляризатором і аналізатором, можна
спостерігати інтерференційну картину.
По вигляду інтерференційних смуг можна
судити про
розподіл напруг в досліджуваному тілі
(кожна ізохромата проходить через точки,
в яких
однакові).
На рис. 6.25 показано вигляд деформованої
пластмасової моделі між двома схрещеними
поляризаторами. Оптичний
метод вивчення розподілу внутрішніх
напруг на прозорих моделях деталей і
конструкцій широко використовується
в сучасній техніці і будівництві.
Штучна анізотропія, викликана електричним полем, була відкрита Кером (1875) і носить назву ефекту Кера. Схема його спостереження зображена на рис.6.26, де П і А – поляризатор і схрещений з ним аналізатор, К – комірка Кера (кювета з рідиною і плоским конденсатором). Під дією однорідного електричного поля ізотропна рідина набуває властивостей одноосного кристалу. При цьому
, (6.46)
де
–довжина хвилі світла у вакуумі, В
– стала Кера, Е
– напруженість електричного поля.
Анізотропія
пояснюється тим, що рідина в електричному
полі поляризується і набуває анізотропних
властивостей. Орієнтація і дезорієнтація
молекул відбувається на протязі
секунди, тому при вимиканні електричного
поля практично миттєво зникає світло
після аналізатора, тобто комірка Кера
працює як безінерційний світловий
перемикач.
6.9.2. При
проходженні лінійно-поляризованого
світла через оптично активні речовини
(кварц, розчин цукру) площина поляризації
світла обертається навколо напрямку
поширення променя. Кут повороту
пропорційний до шляху
,
пройденому променем в речовині:
. (6.47)
Коефіцієнт
називають постійною обертання.
В розчинах кут
повороту площини поляризації пропорційний
до шляху променя в розчині
і концентрації розчину С:
(6.48)
де
–
питома постійна обертання.
Залежність (6.48)
використовується для вимірювання
невідомої концентрації
за відомою концентрацією розчину
:
(6.49)
де
–
кут повороту для невідомої концентрації,
–
кут повороту для відомої концентрації.
Явище оптичної активності покладене в основу роботи цукрометрів – приладів для вимірювання концентрації розчинів.