Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции по моде.doc
Скачиваний:
20
Добавлен:
05.12.2018
Размер:
744.45 Кб
Скачать

Классификация оптимизационных задач

Все множество оптимизационных задач можно разделить на несколько классов по следующим признакам:

  1. Вид экстремума целевой функции. Нас может интересовать поиск максимума или минимума целевой функции. Как известно, переход от поиска минимума к поиску максимума не представляет труда: минимум функции y=f(x) достигается при тех же условиях, что и максимум функции –y=–f(x). Таким образом, для смены экстремума достаточно целевую функцию умножить на минус единицу. Пример пояснен на рисунке.

  1. Число критериев оптимальности. По этому признаку все множество задач оптимизации можно разделить на два подмножества:

а) однокритериальные задачи;

б) многокритериальные задачи.

В первом случае в задаче может быть сформулирован единственный критерий оптимальности. При необходимости он может быть получен из нескольких частных критериев оптимальности одним из ранее описанных методов (аддитивный, мультипликативный).

Во втором случае в задаче по принципиальным соображениям нет единственного критерия оптимальности. Решение такой задачи часто бывает неоднозначным, а математические методы решения разработаны хуже, чем для однокритериальных задач.

  1. По числу оптимизирующих факторов. Здесь также можно выделить два подмножества:

а) однофакторные задачи;

б) многофакторные задачи.

В первом случае в задаче имеется единственный оптимизирующий фактор (единственное управляющее воздействие не объект, которое мы можем изменять в заданных пределах). Математически это означает, что целевая функция зависит от величины единственного своего аргумента.

Во втором случае целевая функция зависит от нескольких (двух и более) аргументов. Имеется два и более управляющих воздействия, изменяя которые в заданных пределах, мы управляем объектом.

  1. Наличие ограничений.

Большинство реальных задач содержат ограничения. Наличие ограничений существенно влияет на получение решения оптимизационной задачи. Некоторые задачи можно рассматривать как задачи безусловной оптимизации. В таких задачах ограничения очень широкие и не влияют на результат решения задачи.

  1. По особенностям целевой функции.

Целевая функция может быть задана математически различными способами:

  • Аналитический способ F = (u1, u2, …, um);

  • Алгоритм.

Целевая функция может быть линейной или нелинейной относительно оптимизирующих факторов. В задачах линейного программирования, например, целевая функция линейная. Существует много задач с нелинейно-заданной функцией.

Итак, выбор математического метода решения оптимизационных задач зависит от свойств поставленной задачи. К настоящему времени существует достаточно много математических методов решения оптимизационных задач. По особенностям их реализации методы можно объединить в три группы:

  1. Аналитические.

  2. Поисковые.

  3. Экспериментальные.

Аналитические методы решения оптимизационных задач

Для реализации аналитических методов целевая функция должна быть задана аналитически. Аналитические методы могут использоваться для решения однофакторных и многофакторных задач.

  1. Однофакторные задачи. Пусть целевая функция зависит от единственного аргумента. Для поиска ее экстремума (скажем, минимума) используем известные приемы математического анализа. Достаточно взять производную функции и приравнять ее к нулю, а затем решить полученное уравнение. Для определения типа экстремума (минимум, максимум или точка перегиба) потребуется также взять вторую производную. Знак второй производной указывает на тип экстремума: положительное значение говорит о том, что найден минимум, отрицательное – максимум функции.

y = f (x) → min

y = 2x2 + 4x – 8 → min

y'=0 4x + 4 = 0

x = -1

y''Є(- ∞; +∞ ) y'' = 0 – точка перегиба

y'' < 0 – максимум функции

y'' > 0 – минимум функции.

Аналитический метод для однофакторных задач предъявляет высокие требования к целевой функции: она должна быть задана аналитически и иметь 1-ю и 2-ю производные. В этом случае поиск решения осуществляется методами математического анализа.

  1. Многофакторные задачи.

В многофакторных задачах целевая функция зависит от двух и более аргументов.

F(x1, x2, …, xn) – функция нескольких переменных (≥2). Пусть, например, аналитическое выражение целевой функции имеет следующий вид:

у = 2х12 + 3х22 + 4х1 + 5х2 – 16.

1 + 4 = 0

2 + 5 = 0.

Для решения воспользуемся методами математического анализа применительно к функции нескольких переменных. Возьмем частные производные по каждому аргументу и приравняем их к нулю. Получим систему уравнений, решая которую определим условия экстремума целевой функции.

Аналитические методы для решения многофакторных задач так же используются крайне редко, т.к.: функция должна быть задана аналитически (иметь 1-ю и 2-ю производные); в ходе решения задачи можно прийти к системе нелинейных уравнений, которую придется решать численными, приближёнными методами.