
- •69. Интегрирование тригонометрических выражений с помощью тригонометрических подстановок.
- •70. Интегрирование простейших иррациональных функций.
- •71. Интегрирование некоторых иррациональных функций с помощью тригонометрических подстановок.
- •72. Некоторые интегралы, не выражающиеся в элементарных функциях.
- •74. Интегральные суммы. Определение определенного интеграла. Интегральные суммы.
- •79. Геометрическое применение определенного интеграла.
- •80. Понятие о несобственных интегралах.
- •63. Непосредственное интегрирование.
- •64. Метод интегрирования с помощью замены.
- •65. Метод интегрирования по частям.
- •66. Понятие дробно-рациональной функции. Простейшие рациональные дроби.
- •67. Правильные и неправильные дроби. Процесс деления и выделения целой части для неправильной дроби.
- •68. Разложение правильной дроби в сумму простейших дробей.
- •69. Интегрирование тригонометрических выражений с помощью тригонометрических подстановок.
- •III. Интегрирование выражений вида sin (αx) · sin (βx) , sin (αx) · cos (βx) , cos (αx) · cos (βx) .
- •Возрастание и убывание функции.
- •46Выпуклость и вогнутость функции.
- •Экстремумы функции.
- •46Асимптоты функции.
- •Виды асимптот графиков
- •Исследование функций и построение графиков.
- •61. Первообразная функции. Неопределенный интеграл.
- •39Применение дифференциала для приближенных вычислений.
- •Теорема Ферма.
- •41Теорема Ролля.
- •Геометрический смысл:Теорема утверждает, что если ординаты обоих концов гладкой кривой равны, то на кривой найдется точка, в которой касательная к кривой параллельна оси абсцисс.
- •Следствие
- •40Теорема Лагранжа.
- •Доказательство
- •Теорема Коши.
- •Доказательство
- •42Правило Лопиталя.
- •Примеры
- •36. Производная неявной функции.
- •45. Производная параметрически заданной функции.
- •37 Производные высших порядков.
- •38Определение дифференциала функций. Правила нахождения дифференциала.
- •38 Дифференциал сложной функции.
- •Инвариантность формы первого дифференциала.
- •37. Непрерывность основных элементарных функций. Точки разрыва и их классификации
- •27. Задачи, приводящие к понятию производной
- •28 Определение производной, ее геометрический и механический смысл
- •40. Касательная к кривой на плоскости
- •41. Зависимость между непрерывностью и дифференцируемостью функции.
- •27. Определение предела функции.
- •Определения
- •28. Бесконечно малые и бесконечно большие величины. Связь между ними.
- •29. Свойства бесконечно малых величин.
- •30. Односторонние пределы
- •23. Основные теоремы о пределах.
- •32. Раскрытие неопределенностей
- •25. Первый замечательный предел
- •26. Второй замечательный предел
- •35. Приращение аргумента и функции. Определение непрерывности функции в точке
- •36. Определение непрерывности функции на промежутке. Основные теоремы о непрерывных функциях
- •19. Угол между прямыми на плоскости.
- •21. Уравнение прямой, проходящей через две точки.
- •22. Расстояние от прямой до точки на плоскости.
- •21???. Определение функции. Область определения, способы задания функции.
- •25. Свойства функций.
- •26. Последовательности, определение предела последовательности.
- •9. Условия совместности и определенности систем линейных уравнений.
- •19. Теорема Кронекера-Капелли.
- •11. Решение системы n линейных уравнений с m неизвестными.
- •14. Решение систем линейных уравнений методом Гаусса.
- •4. Скалярное произведение векторов.
- •1. Расстояние между двумя точками. Коллинеарные вектора.
- •17. Деление отрезка в данном отношении.
- •15Матрицы. Действия с матрицами.
- •4. Разложение определителей по элементам строк и столбцов.
- •16. Понятие обратной матрицы.
- •Свойства обратной матрицы
- •17. Метод обратной матрицы решения систем линейных уравнений.
- •13 . Правило Крамера решения систем линейных уравнений.
- •Решение системы находим по формулам Крамера
- •19. Понятие ранга матрицы. Его нахождение.
4. Скалярное произведение векторов.
Скаля́рное произведе́ние — операция над двумя векторами, результатом которой является скаляр (число), не зависящее от системы координат и характеризующее длины векторов-сомножителей и угол между ними. Эта операция обычно рассматривается как коммутативная и линейная по каждому сомножителю.
Скалярным произведением векторов и называется произведение их длин на косинус угла между ними:
Скалярное произведение двух ненулевых векторов равно нулю тогда и только тогда, когда эти векторы перпендикулярны.
Скалярный квадрат вектора, то есть скалярное произведение его самого на себя, равно квадрату его длины.
Скалярное произведение двух векторов и его свойства.
Скалярным произведением двух нулевых векторов называется число, равное
произведению числовых значений длин этих векторов на косинус угла между
векторами.
Обозначение: а х в = IaI * IbI * cos ( а, в).
Свойства скалярного произведения:
1. а х в = в х а.
2. Для того, чтобы два нулевых вектора а и в были перпендикулярны,
необходимо и достаточно, чтобы скалярное произведение этих векторов было
равно нулю, т.е. а х в = 0.
3. Выражение а х а будем обозначать а2 и называть скалярным квадратом
вектора а.
15 . Длина вектора. Угол между векторами. Угол между вектором и осью.
Длина вектора в
координатах определяется как расстояние
между точками начала и конца вектора.
Если заданы две точки в пространстве
А(х1,
y1,
z1),
B(x2,
y2,
z2),
то
Определение. Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором.
При параллельном переносе любого из двух векторов угол между ними остается неизменным, только в этом случае поворот одного из векторов осуществляется либо в общей для обоих векторов плоскости, либо в плоскости параллельной другому вектору.
Введем понятие угла между вектором и осью.
Определение. Углом между вектором и осью называется угол между данным вектором и любым правоориентированным вектором этой оси.
1. Расстояние между двумя точками. Коллинеарные вектора.
Расстояние
d между двумя точками
(
,
,
)
и
(
,
,
)
в пространстве определяется формулой
.Координаты x, y, z
точки М, которая делит отрезок
,
ограниченный точками
(
,
,
)
и
(
,
,
),
в отношении
,
определяется по формулам
,
,
.
В
частности, при
имеет
координаты середины данного отрезка:
,
,
.
Два ненулевых вектора называются коллинеарными, если они лежат на одной прямой или на параллельных прямых. Коллинеарные векторы либо одинаково направлены, либо противоположно направлены
Коллинеарные векторы могут быть одинаково направлены («сонаправлены») или противоположно направлены (в последнем случае их иногда называют «антиколлинеарными» или «антипараллельными»).
17. Деление отрезка в данном отношении.
Если
точка М(x; y) лежит на прямой, проходящей
через две данные точки
(
,
)
и
(
,
),
и дано отношение
,
в котором точка М делит отрезок
,
то координаты точки М определяются по
формулам
,
Если
точка М является серединой отрезка
,
то ее координаты определяются по формулам
,
.
Даны точки А1(x1;y1), А2(x2;y2). Требуется найти координаты х, у точки К, делящей отрезок А1А2 в отношении l=m1:m2.
Решение
дается формулами:
Выражение "точка К делит отрезок А1А2 в отношении m1:m2" означает, что отношение m1:m2 равно отношению отрезков А1К:КА2, взятых именно в этом (а не в обратном) порядке.
Пусть точка К делит отрезок А1А2 внешним образом, т.е. лежит на продолжении отрезка А1А2;тогда указанные формулы сохраняют силу, если величине m1:m2=l приписать отрицательный знак.