- •В. Л. Фёдоров теоретические основы электротехники Линейные электрические цепи
- •Основные законы, элементы и параметры электрических цепей
- •1.1. Элементы цепи
- •1.1.1. Сопротивление
- •1.1.2. Индуктивность
- •1.1.3. Емкость
- •1.2. Условные положительные направления тока и напряжения
- •1.2.1. Сопротивление
- •1.2.2. Индуктивность
- •1.2.3. Емкость
- •1.3. Источники эдс и тока
- •1.4. Основные определения, относящиеся к электрической цепи
- •1.5. Закон Ома для участка цепи, содержащего эдс
- •1.6. Законы Кирхгофа
- •1.7. Энергия и мощность
- •1.8. Баланс мощностей
- •Цепи синусоидального тока
- •2.1. Основные параметры синусоидальных эдс, напряжения и тока
- •2.2. Среднее и действующее значения синусоидального тока
- •2.3. Синусоидальный ток в сопротивлении
- •2.4. Синусоидальный ток в индуктивности
- •2.5. Синусоидальный ток в емкости
- •2.6. Синусоидальный ток в цепи с последовательным соединением r, l, с
- •2.7. Синусоидальный ток в цепи с параллельным соединением r, l, c
- •2.8. Мощность в цепи синусоидального тока
- •2.9. Баланс мощностей в цепи синусоидального тока
- •3. Символический (комплексный) метод расчета цепей синусоидального тока
- •3.1. Законы Ома и Кирхгофа в комплексной форме записи
- •3.2. Векторная диаграмма
- •3.3. Комплексная форма записи мощности. Баланс мощности
- •4. Методы расчета линейных электрических цепей
- •4.1. Метод преобразования
- •4.1.1. Замена последовательно включенных сопротивлений одним эквивалентным
- •4.1.2. Замена параллельно включенных сопротивлений одним эквивалентным
- •4.1.3. Взаимные преобразования “треугольник - звезда”,
- •4.2. Метод законов Кирхгофа
- •4.3. Метод контурных токов
- •4.4. Метод узловых потенциалов
- •4.5. Замена нескольких параллельных ветвей, содержащих источники эдс и тока, одной эквивалентной
- •4.6. Принцип наложения и метод наложения
- •4.7. Метод эквивалентного генератора
- •5. Цепи со взаимной индуктивностью
- •5.1. Явление взаимоиндукции. Взаимная индуктивность
- •5.2. Расчет индуктивно связанных цепей методом законов Кирхгофа
- •5.3. Последовательное соединение двух магнитосвязанных катушек
- •5.4. Опытное определение величины взаимной индуктивности
- •5.5. Баланс мощности в цепях со взаимной индуктивностью
- •5.6. Трансформатор без магнитопровода
- •5.7. Идеальный трансформатор
- •6. Резонанс в цепях синусоидального тока
- •6.1. Частотные характеристики двухполюсников. Резонанс
- •6.2. Резонанс напряжений
- •6.3. Резонанс токов
- •7. Трехфазные цепи
- •7.1. Трехфазная симметричная система эдс. Трехфазная цепь
- •7.2. Симметричный режим работы трехфазной цепи при соединении генератора с нагрузкой по схеме
- •7.3. Симметричный режим работы трехфазной цепи при соединении генератора с нагрузкой по схеме
- •7.4. Расчет симметричных трехфазных цепей
- •7.5. Расчет несимметричных трехфазных цепей
- •7.6. Мощность трехфазной цепи
- •7.7. Способы получения кругового вращающегося магнитного поля
- •8. Метод симметричных составляющих
- •8.1. Понятие о системах прямой, обратной и нулевой последовательностей
- •8.2. Сопротивления элементов трехфазной цепи токам прямой, обратной и нулевой последовательностей
- •8.3. Составление схем замещения трехфазной цепи для токов прямой, обратной и нулевой последовательностей
- •8.3.1. Составление схем замещения для цепей с поперечной несимметрией
- •8.3.2. Составление схем замещения для цепей с продольной несимметрией
- •8.4. Составление систем уравнений для расчета несимметричных режимов
- •8.4.1. Составление системы уравнений и расчет цепи
- •8.4.2. Составление системы уравнений и расчет цепи
- •8.4.3. Составление системы уравнений и расчет цепи
- •8.4.4. Составление дополнительных уравнений для частных случаев цепей с поперечной несимметрией
- •3. Символический (комплексный) метод расчета цепей
4.5. Замена нескольких параллельных ветвей, содержащих источники эдс и тока, одной эквивалентной
Схемы
рис. 4.15а и рис. 4.15б являются эквивалентными,
если при любых значениях тока
напряжение на зажимах
обеих схем будет одинаковым. Для
определения величин
и
сопоставим выражения для тока
обеих схем.
Для цепи рис. 4.15а:
.
(4.17)
Выразим
отдельные составляющие (4.17) через
напряжение
с помощью закона Ома:
,
,
,
.
б)
а)
Рис. 4.15
Подставим
полученные выражения для токов
-
в формулу (4.17):
.
(4.18)
Для цепи рис. 4.15б справедливо
.
(4.19)
Равенство
токов
в (4.18) и (4.19) возможно при выполнении двух
условий:
а)
;
(4.20)
б)
.
(4.21)
Из
(4.20) и (4.21) можно определить искомые
величины
и
:
,
(4.22)
.
(4.23)
Обобщим
вышеизложенное. Пусть требуется заменить
n
ветвей, содержащих источники ЭДС, q
ветвей с источниками тока и p
пассивных ветвей без источников
электрической энергии (все ветви включены
параллельно) одной эквивалентной.
Искомые величины
и
можно определить по формулам:
![]()
,
(4.24)
.
(4.25)
Если направление источника ЭДС (тока) в исходной ветви совпадает с выбранным направлением эквивалентной ЭДС, то в числителе (4.25) перед соответствующим слагаемым ставится знак “ + ”, в противном случае – “ – ”.
4.6. Принцип наложения и метод наложения
Принцип наложения: ток в любой ветви электрической цепи равен алгебраической сумме токов, вызываемых каждым источником электрической энергии в отдельности. Этот принцип справедлив для всех линейных электрических цепей.
Принцип наложения применяется в методе расчета, получившем название метода наложения. При использовании данного метода поступают следующим образом: поочередно рассчитывают токи, возникающие от действия каждого источника электрической энергии в отдельности, мысленно удаляя остальные источники из схемы. При этом внутренние сопротивления источников должны остаться в цепи. Это означает, что участок ветви, в котором был источник ЭДС, замыкается накоротко (рис. 4.16а), а участок с источником тока размыкается (рис. 4.16б). Затем находят фактические токи в ветвях путем алгебраического сложения частичных токов. Если направление частичного тока совпадает с выбранным направлением фактического тока, то при суммировании частичный ток берется со знаком “ + ”, иначе – “ – ”.

а) б)
Рис. 4.16
Рассмотрим в качестве примера расчет токов в цепи рис. 4.17а методом наложения.

а) б) в)
Рис. 4.17
На
первом этапе удалим из схемы источник
тока
,
а источник ЭДС
оставим (рис. 4.17б). Очевидно, что частичные
токи в этой цепи
,
.
На
втором этапе удалим из схемы источник
ЭДС
,
а источник тока
оставим (рис. 4.17в). Частичные токи
рассчитаем методом преобразования:
,
,
.
На заключительном этапе находим фактические токи в ветвях цепи рис. 4.17а путем сложения частичных токов:
,
,
.
