Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Podgotovka_k_testirovaniyu_po_TV_i_MS.doc
Скачиваний:
9
Добавлен:
01.12.2018
Размер:
857.6 Кб
Скачать

Примеры решения тестовых заданий

  1. Игральная кость бросается один раз. Вероятность того, что появится НЕ МЕНЕЕ 4 очков, равна…

  1. В классической схеме определения вероятностей (Определение 1.10.) сначала следует определить пространство элементарных исходов эксперимента . В данном случае элементарный исход – это выпавшее количество очков, поэтому  = {1, 2, 3, 4, 5, 6}. Следующее действие состоит в том, чтобы подсчитать количество элементарных исходов, при реализации которых наступает интересующее нас событие. Событие А = {выпало НЕ МЕНЕЕ 4 очков} наступает тогда, когда на игральной кости выпадет 4, 5 или 6 очков. Всего три элементарных исхода, благоприятствующих событию А. Делим количество благоприятствующих исходов на общее число возможных исходов .

  1. В стопке 12 тетрадей. Из них 7 в клетку, остальные в линию. Из стопки наугад выбирают сразу две тетради. Вероятность того, что они обе в клетку, равна …

  1. В таких задачах удобно представлять себе одинаковые объекты разными. Например, тетради в клетку имеют разноцветные обложки или на них написаны инвентарные номера и т.п. Посчитаем количество способов выбора двух тетрадей в клетку. Будем выбирать тетради по очереди. Первая тетрадь в клетку может быть одного из 7 цветов. Значит, есть 7 вариантов выбора первой тетради. После того, как выбрана первая тетрадь, осталось еще 6 в клетку. Из них будем выбирать вторую. Значит, есть 6 вариантов выбора второй тетради. На каждую, выбранную первой тетрадь в клетку, приходится по 6 вариантов выбора второй тетради в клетку. Поэтому общее число вариантов выбора двух тетрадей в клетку из семи, находящихся в стопке, равно . Но следует учесть, что при таком способе подсчета, все возможные варианты будут посчитаны дважды. Например, если первой была выбрана тетрадь синего цвета, а потом красного, то, в следующий раз может получиться так, что первой окажется красная тетрадь, а потом синяя. Таким образом, чтобы получить количество способов выбора без учета порядка, следует поделить общее число вариантов на количество способов упорядочивания, т.е. в данном случае на 2. Благоприятных исходов (Определение 1.11.). Действуя по аналогичной схеме, можем посчитать общее количество способов выбора двух тетрадей из имеющихся двенадцати (Определение 1.11.). Искомая вероятность (Определение 1.10.) .

  1. Бросаются три игральные кости один раз. Вероятность того, что сумма очков составит 17, равна…

  1. Чтобы в сумме выпало 17, на двух костях из трех должны выпасть шестерки, а на одной пятерка. Раскрасим одинаковые игральные кости в разные цвета. Например, красный, зеленый и синий. Пятерка может выпасть либо на красной, либо на зеленой, либо на синей игральной кости. Получаем три благоприятные комбинации: {К-5, З-6, C – 6}, {К-6, З-5, C–6}, {К-6, З-6, C–5}. Всего же комбинаций , значит, искомая вероятность (Определение 1.10.) равна .

  1. Двое договариваются о встрече в определенном месте, которая должна произойти в промежутке времени от 12 часов до 12 часов и 20 минут. Каждый из договаривающихся приходит к месту встречи в любой наугад взятый момент времени из этого промежутка времени и ждет другого 5 минут (в пределах указанного промежутка времени). Вероятность, что встреча состоится равна ...

  1. Это классический пример задачи на геометрическое определение вероятности (Определение 1.12.). Чтобы решить задачу следует сначала определить, а затем геометрически изобразить пространство элементарных исходов. Элементарным исходом в данном эксперименте будет являться пара вида (t1, t2), где числа t1 и t2 заключены в интервале от 12 часов до 12 часов 20 минут. Поскольку начало отсчета нас мало интересует (суть задачи от этого не изменится) можно считать, что t1 и t2 лежат на отрезке [0, 20]. Немаловажным фактором в этой задаче является независимость выбора момента времени двумя игроками, поэтому здесь имеется две степени свободы и геометрически пространство элементарных исходов представляет собой квадрат со стороной 20 (см. рисунок 1). Встреча состоится лишь тогда, когда . Данное условие определяет множество благоприятствующих встрече исходов. Геометрически оно представляет собой полосу шириной 52, проходящую симметрично вдоль диагонали квадрата .

t1

Рис. 1. Геометрическое изображение множества исходов

Отсюда легко определить, что , , и искомая вероятность .