Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фейнман - 9. Квантовая механика II.docx
Скачиваний:
12
Добавлен:
12.11.2018
Размер:
3.69 Mб
Скачать

§ 5. Измерение ядерного спина

Продемонстрируем теперь пример, где понадобятся только что описанные коэффициенты. Он связан с проделанными не так давно интересными опытами, которые вы теперь в состоянии будете понять. Некоторым физикам захотелось узнать спин одного из возбужденных состояний ядра Ne20. Для этого они принялись бомбить углеродную мишень пучком ускоренных ионов углерода и породили нужное им возбужденное состояние Ne20 (обозначаемое Ne20*) в реакции

где 1 — это -частица, или Не4. Кое-какие из создаваемых таким образом возбужденных состояний Ne20 неустойчивы и распадаются таким путем:

Значит, на опыте видны возникающие в реакции две -частицы. Обозначим их 1 и 2; поскольку они вылетают с разными энер­гиями, их можно отличить друг от друга. Кроме того, выбирая 1, имеющие нужную энергию, мы можем отобрать любые воз­бужденные состояния Ne20.

Опыт ставился так, как показано на фиг. 16.9.

Фиг. 16.9. Размещение приборов в опыте по определению спина воз­бужденных состояний Ne20.

Пучок ионов углерода с энергией 16 Мэв был направлен на углеродную пленку. Первая -частица регистрировалась кремниевым детектором, настроенным на прием -частиц с нужной энергией, движущихся вперед (по отношению к падающему пучку ионов С12). Вторая -частица регистрировалась счетчиком 2, поставленным под углом  к 1. Скорость счета сигналов совпа­дений от 1 и 2 измерялась как функция угла .

Идея опыта в следующем. Прежде всего нужно знать, что спины С12, О16 и -частицы все равны нулю. Назовем направ­ление движения начальных частиц С12 направлением +z; тогда известно, что Ne20* должен обладать нулевым моментом коли­чества движения относительно оси z. Ведь ни у одной из осталь­ных частиц нет спина; кроме того, С12 прилетает вдоль оси z и 1 улетает вдоль оси z, так что у них не может быть момента относительно этой оси. И каким бы ни был спин j ядра Ne20*, мы знаем, что это ядро находится в состоянии |j, 0>. Что же случится, когда Ne20* распадется на О16 и другую -частицу? Что ж, -частицу поймает счетчик 2, а О16, чтобы сохранить начальный импульс, вынужден будет уйти в противоположную сторону. Относительно новой оси (оси 2) не может быть тоже никакой компоненты момента количества движения. А раз конечное состояние имеет относительно новой оси нулевой мо­мент количества движения, то у распада Ne20* должна быть некоторая амплитуда того, что m'=0, где m'—квантовое число компоненты момента количества движения относительно новой оси. Вероятность наблюдать 2 под углом  будет на самом деле равна квадрату амплитуды (или матричного эле­мента)

Чтобы получить спин интересующего нас состояния Ne20*, вычертим интенсивность наблюдений второй -частицы как функцию угла и сравним с теоретическими кривыми для раз­личных значений j. Как мы отмечали в конце предыдущего параграфа, амплитуды <j,0|Ry()|j,0>—это просто функции Рj(cos). Значит, угловые распределения будут следовать кри­вым [Pj(cos)]2. Экспериментальные результаты для двух возбужденных состояний показаны на фиг. 16.10.

Фиг. 16.10. Экспе­риментальные резуль­таты измерений уг­лового распределения -частиц, вылетающих при распаде двух воз­бужденных состояний Ne20.

Они получены на устрой­стве, показанном на фиг. 16.9.

Вы видите, что угловое распределение для состояния 5,80 Мэв очень хорошо укладывается на кривую1(cos)]2, т. е. оно должно быть состоянием со спином 1. С другой стороны, данные для состоя­ния 5,63 Мэв выглядят совершенно иначе; они ложатся на кривую [Р3(cos)]2. Спин этого состояния равен 3.

В этом опыте мы измерили момент количества движения двух возбужденных состояний Ne20*. Этой информацией можно воспользоваться, чтобы понять, как ведут себя протоны и нейтроны внутри этого ядра, и это принесет нам добавочные сведения о таинственных ядерных силах.