Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фейнман - 9. Квантовая механика II.docx
Скачиваний:
12
Добавлен:
12.11.2018
Размер:
3.69 Mб
Скачать

§ 3. Состояния с определенным импульсом

Пусть у нас имеется электрон в состоянии |>, описывае­мом амплитудой вероятности |>= (х). Мы знаем, что  (х) обозначает состояние, в котором электрон размазан по прямой по какому-то закону, так что вероятность обнаружить его в узком интервале dx близ точки х попросту равна

Вер. (х, dx)=| (х)|2dx.

Что можно сказать об импульсе этого электрона? Можно спро­сить, какова вероятность того, что импульс этого электрона равен р? Начнем с расчета амплитуды того, что состояние |> присутствует в другом состоянии | имп. p>, которое мы опреде­лим как состояние с определенным импульсом р. Эту амплитуду можно найти, применяя наше основное уравнение для разло­жения амплитуд (14.20). В терминах состояний |имп. p>

А вероятность того, что у электрона будет обнаружен импульс р, выразится квадратом абсолютной величины этой амплитуды. Но опять возникает тот же вопрос насчет нормирования. Ведь вообще можно говорить только о вероятности обнаружить электрон с импульсом в узкой области dp близ значения р. Вероятность того, что импульс в точности равен р, равна нулю (разве что состояние |> окажется состоянием с определенным импульсом). Только вероятность обнаружить импульс в интер­вале dp возле значения р может оказаться конечной. Нормиров­ку можно делать по-разному. Мы выберем тот способ нормиров­ки, который нам кажется особенно удобным, хотя вам сейчас это может так и не показаться.

Примем такую нормировку, чтобы вероятность была связана с амплитудой равенством

Это определение дает нам нормировку амплитуды <имп. р|x>. Амплитуда <имп. р|х>, естественно, комплексно сопряжена с амплитудой <х|имп. р>, а последнюю мы писали в (14.15). При нашей нормировке оказывается, что коэффициент пропор­циональности перед экспонентной как раз равен единице, т. е.

Тогда (14.21) превращается в

Вместе с (14.22) это уравнение позволяет находить распреде­ление импульсов для любого состояния |>.

Возьмем частный пример: скажем, когда электрон распо­ложен в некоторой области вокруг х=0. Пусть мы взяли вол­новую функцию вида

Распределение вероятности иметь то или иное значение х для такой волновой функции дается ее квадратом

Функция плотности вероятности Р(х)это кривая Гаусса, по­казанная на фиг. 14.1.

фиг. 14.1. Плотность вероятности для волно­вой функции (14.24).

Большая часть вероятности сосредото­чена между х=+ и х=-. Мы говорим, что «полуширина» кривой есть а. (Точнее, а равняется средней квадратичной координате х, если разброс координат соответствует этому распределению.) Коэффициент К следовало бы выбрать так, чтобы плотность вероятности Р(х) не просто была пропорциональна вероятности (на единицу длины ж) обнаружить электрон, но имела бы такой масштаб, чтобы Р(х)x равнялось вероят­ности обнаружить электрон в x вблизи х. Коэффициент К, при котором так и получается, можно найти из требования

\ Р (х) dx=1, потому что вероятность обнаружить электрон

где попало равна единице. Мы находим, что К = (22)-1/4.

Теперь найдем распределение по импульсу. Пусть (p)

есть амплитуда того, что импульс электрона окажется равным р:

Подстановка (14.25) в (14.24) дает

что можно также переписать в форме

Сделаем теперь замену интеграл обратится в

Математикам, вероятно, не понравился бы такой путь расчета, однако итог, несмотря на это, верен:

Мы пришли к интересному результату — распределение амплитуд по р имеет в точности ту же математическую форму, как и распределение амплитуд по х, только ширина кривой Гаусса иная. Можно записать это так:

где полуширина распределения по р связана с полушириной а распределения по х формулой

Наш результат утверждает: если сделать распределение по х очень узким, взяв  малым, то  станет большим и распре­деление по р сильно расползется. Или наоборот, если распределение по р узко, то оно соответствует широкому распределению по х. Мы можем, если угодно, рассматривать  и как некую меру неопределенности локализации импульса и коор­динаты электрона в изучаемом нами состоянии. Если обозначить их соответственно р и x, то (14.33) обратится в

Интересно вот что: можно доказать, что при всяком ином

виде распределения по х или по р произведение px не может

стать меньше, чем у нас получилось. Гауссово распределение

дает наименьшее возможное значение произведения средних

квадратичных. В общем случае

Это количественная формулировка принципа неопределенности Гейзенберга, который качественно нам уже давно известен. Мы обычно делали приближенное утверждение: наименьшее значение произведения px — это число порядка h.