Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фейнман - 9. Квантовая механика II.docx
Скачиваний:
12
Добавлен:
12.11.2018
Размер:
3.69 Mб
Скачать

§ 2. Волновая функция

Чтобы получить некоторое представление о том, как теперь все будет выглядеть, вернемся к самому началу и изучим проб­лему описания движения электрона по прямой, не рассматривая состояний, связанных с атомами решетки. Мы хотим возвратить­ся к самому началу и посмотреть, какими представлениями нужно пользоваться, чтобы описать движение свободной части­цы в пространстве. Раз нас интересует поведение частицы вдоль континуума точек, то придется иметь дело с бесконечным мно­жеством возможных состояний и, как вы увидите, идеи, которые были развиты для конечного числа состояний, потребуют неко­торых технических видоизменений.

Начнем с того, что вектором состояния |х> обозначим со­стояние, в котором частица расположена в точности в точке с координатой х. Для каждого значения х вдоль прямой — для 1,73, для 9,67, для 10,00 и т. д.— имеется соответствующее состояние. Выберем эти состояния |х> в качестве базисных. Если это сделать для всех точек х прямой, то получится полная совокупность состояний для движения в одном измерении. Теперь положим, что имеется состояние другого рода, скажем |>, в котором электрон как-то распределен вдоль прямой. Один из способов описать это состояние — задать все амплиту­ды того, что электрон будет также найден в каждом из базисных состояний |x>. Надо задать бесконечную совокупность ампли­туд, по одной для каждого х. Запишем их в виде <x|>. Каж­дая из этих амплитуд — комплексное число, и поскольку для каждого значения х существует одно такое число, амплитуда <x|> является в действительности просто функцией х. Запи­шем ее также в виде С (х):

Мы уже рассматривали такие амплитуды, которые непрерыв­ным образом меняются с координатами, говоря в гл. 5 (вып. 8) об изменениях амплитуд во времени. Мы, например, показали там, что следует ожидать, что частица с определенным импуль­сом будет обладать особым типом изменения своей амплитуды во времени. Если частица имеет определенный импульс р и соответствующую ему определенную энергию Е, то амплитуда того, что она будет обнаружена в любом заданном месте x, такова:

<x|> = С (x) ~e+ipx/h. (14.15)

Это уравнение выражает важный общий принцип квантовой механики, который связывает базисные состояния, соответст­вующие различным положениям в пространстве, с другой системой базисных состояний — со всеми состояниями опреде­ленного импульса. В некоторых задачах состояния определен­ного импульса удобнее, чем состояния с определенным х. И лю­бая другая система базисных состояний также годится для опи­сания квантовомеханической ситуации. К связи между ними мы еще вернемся. А сейчас мы по-прежнему будем придерживаться описания на языке состояний |х>.

Прежде чем продолжать, прибегнем к небольшой замене обозначений, которая, надеемся, вас не слишком смутит. Форма функции С (х), определенной уравнением (14.14), естественно, будет зависеть от рассматриваемого состояния |>. Это нужно как-то отметить. Можно, например, указать, о какой функции С (х) идет речь, поставив снизу индекс, скажем С(х). Хотя такое обозначение вполне подошло бы, но оно все же чуточку громоздко и в большинстве книг вы его не встретите. Обычно просто убирают букву С и пользуются символом  для опреде­ления функции

Поскольку это обозначение принято во всем мире, неплохо было бы и вам привыкнуть к нему и не пугаться, встретив его где-нибудь. Надо только помнить, что  теперь будет использоваться двояким образом. В (14.14)  обозначает метку, которой мы отметили заданное физическое состояние электрона. А в (14.16) слева символ  применяется для определения математической функции от х, равной амплитуде, связываемой с каждой точкой х прямой. Надеемся, что это не слишком смутит вас, когда вы привыкнете к самой идее. Кстати, функцию  (х) обычно именуют «волновой функцией», потому что она очень часто имеет форму комплексной волны своих переменных.

Раз мы определили  (х) как амплитуду того, что электрон в состоянии  обнаружится в точке х, то хотелось бы интер­претировать квадрат абсолютной величины  как вероятность обнаружить электрон в точке х. Но, к сожалению, вероятность обнаружить электрон в точности в каждой данной точке равна нулю. Электрон в общем случае размазывается по какому-то участку прямой, и поскольку точек на каждом участке беско­нечно много, то вероятность оказаться в любой из них не может быть конечным числом. Вероятность обнаружить электрон мы можем описать только на языке распределения вероятно­стей, которое дает относительную вероятность обнаружить электрон в различных неточно указанных местах прямой. Пусть Вер. (х, х) обозначает вероятность обнаружить электрон в узком интервале х: возле точки х. Если мы в каждой физичес­кой ситуации будем пользоваться достаточно мелким масшта­бом, то вероятность будет от точки к точке меняться плавно, и вероятность обнаружить электрон в произвольном конечном маленьком отрезке прямой х; будет пропорциональна х. И можно так изменить наши определения, чтобы это было учтено. Можно считать, что амплитуда <x|> представляет своего рода «плотность амплитуд» для всех базисных состояний |х> 1 в узком интервале х. Поскольку вероятность обнаружить

iэлектрон в узком интервале х вблизи х должна быть пропор­циональна длине интервала х, мы выберем такое определение <х |>, чтобы соблюдалось следующее условие: Вер. (х, х)=| <x||>|2х. Амплитуда <x|> поэтому пропорциональна амплитуде того, что электрон в состоянии  будет обнаружен в базисном состоя­нии х, а коэффициент пропорциональности выбран так, что квадрат абсолютной величины амплитуды <x|> дает плот­ность вероятности обнаружить электрон в любом узком интер­вале. Можно писать и так:

Вер. (x, х)=|  (х)|2х. (14.17)

Теперь надо изменить некоторые наши прежние уравнения, чтобы согласовать их с этим новым определением амплитуды вероятности. Пусть имеется электрон в состоянии |>, а мы хотим знать амплитуду того, что он будет обнаружен в дру­гом состоянии |>, которое может соответствовать другим условиям размазанности электрона. Когда речь шла о конеч­ной системе дискретных состояний, мы пользовались уравне­нием (14.5). До изменения нашего определения амплитуд мы должны были писать

А теперь если обе эти амплитуды нормированы так, как описано выше, то сумма по всем состояниям из узкого интервала х будет эквивалентна умножению на x, а сумма по всем значениям х превратится просто в интеграл. При наших измененных опре­делениях правильная формула будет такой:

Амплитуда <x|> — это то, что мы теперь называем  (х); точно так же амплитуду <x|> мы обозначим (х). Вспоминая, что <|x> комплексно сопряжена с <x|>, мы можем (14.18) переписать в виде

При наших новых определениях все формулы останутся преж­ними, если только всюду знак суммы заменить интегрирова­нием по х.

К тому, что было сказано, нужно сделать одну оговорку. Любая подходящая система базисных состояний должна быть полной, если хотят, чтобы она сполна отражала все, что проис­ходит. Для одномерного движения электрона в действитель­ности недостаточно указать только базисные состояния |x>, потому что в каждом из этих состояний спин электрона может быть направлен вверх или вниз. Один из способов получить полную систему — взять две совокупности состояний по х: одну для спина вверх, другую для спина вниз. Мы, впрочем, пока не будем входить в такие подробности.