Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фейнман - 9. Квантовая механика II.docx
Скачиваний:
12
Добавлен:
12.11.2018
Размер:
3.69 Mб
Скачать

§ 3. Законы сохранения

Обратимся теперь к другому интересному примеру операции симметрии — к повороту. Рассмотрим частный случай опера­тора, который поворачивает атомную систему на угол  вокруг оси z. Обозначим этот оператор R^z(). Предположим еще, что никаких влияний, выстроенных вдоль осей х и у, в нашем физи­ческом случае нет. Все электрические или магнитные поля взяты параллельными оси z, так что никаких изменений во внешних условиях от поворота всей физической системы вокруг оси z не наступит. Например, если имеется атом в пустом простран­стве и мы повернем этот атом вокруг оси z на угол , то получим ту же физическую систему.

Тогда существуют особые состояния, обладающие тем свойст­вом, что такая операция создает новое состояние, равное перво­начальному, умноженному на некоторый фазовый множитель. Заметим, что когда это так, то изменение фазы обязано быть всегда пропорционально углу . Представьте, что вы дважды захотели бы сделать поворот на угол . Это равносильно тому, что повернуть на угол 2. Если поворот на угол  имеет своим следствием умножение состояния |0> на фазовый множи­тель ei, так что

то два таких поворота, один вслед за другим, привели бы к умножению состояния на множитель (еi)2i2, так как

Изменение фазы  оказывается пропорциональным . Мы, стало быть, рассматриваем лишь те особые состояния |0>, для которых

R^z()|0> =eim|0>, (15.22)

где mнекоторое вещественное число.

Нам известен также тот примечательный факт, что если система симметрична относительно поворота вокруг z и если исходное состояние обладает тем свойством, что (15.22) окажется выполненным, то и позже у этого состояния сохранится то же свойство. Значит, это число m имеет большую важность. Если его значение мы знаем в начале, то мы знаем его и в конце. Это число m, которое сохраняется, есть константа движения. Причи­на, почему мы говорим об m, выталкиваем его на первый план, состоит в том, что оно не связано с каким-либо определенным углом , и еще потому, что у него есть соответствие в классиче­ской механике. В квантовой механике мы выбираем для mh (в состояниях, подобных |0>) название момент количества движения вокруг оси z. И тогда мы обнаруживаем, что в пределе больших систем та же величина равняется z-компоненте момента количества движения из классической механики. Значит, если мы имеем состояние, для которого поворот вокруг оси z при­водит просто к фазовому множителю eim, то перед нами со­стояние с определенным моментом количества движения во­круг этой оси, и момент количества движения сохраняется. Он навсегда остается равным mh. Конечно, повороты можно делать вокруг любых осей, и сохранение момента количества движения тоже будет получаться для любых осей. Вы видите, что сохранение момента количества движения связано с тем фактом, что, когда вы поворачиваете систему, вы получаете опять то же состояние, только с новым фазовым множителем.

Сейчас мы покажем вам, насколько обща эта идея. Применим ее к двум другим законам сохранения, по физической идее точно соответствующим сохранению момента количества движения. В классической физике существует также сохранение импульса и сохранение энергии, и интересно, что оба они тоже связаны с некоторыми физическими симметриями. Положим, у нас имеет­ся физическая система — атом, или сложное ядро, или же моле­кула, или что угодно — и если мы возьмем ее и как целое пере­двинем на новое место, то ничего не изменится. Значит, мы имеем гамильтониан с тем свойством, что он в некотором смысле зави­сит от внутренних координат, но не зависит от абсолютного положения в пространстве. В этих обстоятельствах существует специальная операция симметрии, которая называется простран­ственным переносом. Определим D^x (а) как операцию смещения на расстояние а вдоль оси х. Тогда для каждого состояния мы сможем проделать эту операцию и получить новое состояние. И опять здесь возможны весьма специальные состояния, обла­дающие тем свойством, что когда вы их смещаете по оси х на а, вы получаете то же самое состояние (если не считать фазового множителя). И так же, как делалось выше, можно доказать, что когда так бывает, то фаза пропорциональна а. Так что для этих специальных состояний |0> можно писать

Коэффициент k, умноженный на h, называется х-компонентой импульса. Его называют так потому, что это число, когда система велика, численно совпадает с классическим импульсом рх. Общее утверждение таково: если гамильтониан не меняется при сдвиге системы и если вначале состояние характеризуется опре­деленным импульсом в направлении х, то импульс в направле­нии х останется с течением времени неизменным. Полный им­пульс системы до и после столкновений (или после взрывов или еще чего-нибудь?) будет один и тот же.

Есть и другая операция, которая совершенно аналогична смещению в пространстве: сдвиг во времени. Положим, перед нами физические обстоятельства, когда ничто внешнее от вре­мени не зависит, и вот в этих обстоятельствах мы помещаем нечто в некоторый момент времени в данное состояние и пускаем его на произвол судьбы. А в другой раз (в новом опыте) мы то же самое устройство запускаем двумя секундами позже или вообще т секундами позже. И вот если ничего во внешних условиях не зависит от абсолютного времени, то все будет развиваться точно так же, как прежде, и конечное состояние совпадет с прежним конечным состоянием, за исключением того, что за­поздает на время т. В этих обстоятельствах также найдутся осо­бые состояния, у которых развитие во времени обладает той особенностью, что запоздавшее состояние — это попросту ста­рое состояние, умноженное на фазовый множитель. И на этот раз тоже ясно, что для этих особых состояний изменение фазы должно быть пропорционально . Можно написать

Общепринято при определении  пользоваться знаком минус; при таком соглашении h — это энергия системы; она сохра­няется. Итак, система с определенной энергией — это такая система, которая при сдвиге во времени на  воспроизводит самое себя, умноженную на e-i. (Это как раз то, что мы гово­рили, когда определяли квантовое состояние с определенной энергией, так что все согласуется.) Это означает, что если система находится в состоянии с определенной энергией и если га­мильтониан не зависит от t, то независимо от того, что произой­дет дальше, система во все позднейшие времена будет обладать той же энергией.

Теперь вы понимаете, стало быть, какая связь между законами сохранения и симметрией мира. Симметрия по отношению к сдви­гам во времени влечет за собой сохранение энергии; симметрия относительно положения на осях х, у или z влечет за собой сохранение соответствующей компоненты импульса. Симметрия относительно поворотов вокруг осей х, у и z влечет за собой сохранение х-, у- и z-компонент момента количества движения. Симметрия относительно отражений влечет за собой сохранение четности. Симметрия по отношению к перестановке двух элек­тронов влечет за собой сохранение чего-то, чему не придумано еще названия, и т. д. Часть этих принципов имеет классические аналоги, а часть — нет. В квантовой механике есть больше законов сохранения, чем это нужно для классической механики или по крайней мере чем обыкновенно в ней в ходу.

Чтобы вы смогли разобраться в других книгах по кванто­вой механике, мы сделаем небольшую техническую ремарку и познакомим вас с одним общепринятым обозначением. Операция сдвига по времени — это как раз та самая операция U^, о кото­рой мы как-то говорили:

Многие предпочитают язык бесконечно малых сдвигов по времени или бесконечно малых перемещений в пространстве или пово­ротов на бесконечно малые углы. Поскольку всякое конечное смещение или угол можно постепенно накопить последователь­ными бесконечно малыми смещениями или поворотами, то часто легче проанализировать сначала этот бесконечно малый случай. Оператор бесконечно малого сдвига t во времени есть (по определению гл. 6, вып. 8)

Тогда Н аналогично классической величине, которую мы име­нуем энергией, потому что если Н^|> оказывается равным

постоянной, умноженной на |>, а именно если Н^|>=E|>,

то эта постоянная есть энергия системы.

То же самое проделывается и с другими операциями. Если мы делаем легкое смещение по х, скажем на x, то состояние

|>, вообще говоря, перейдет в некоторое новое состояние

|'>. Мы можем написать

потому что, когда x стремится к нулю, |'> обязано обратиться опять в |>, или, что то же самое, D^x (0)=1, а для малых x отклонение D^x (x) от единицы должно быть пропорционально x. Оператор рх, определенный таким путем, называется оператором импульса (естественно, для x-компоненты).

По тем же причинам для малых поворотов обычно пишут

и называют J^z оператором z-компоненты момента количества движения. Для тех особых состояний, для которых R^z ()|0>=еim |0>, можно для каждого малого угла, скажем , разложить правую часть до членов первого порядка по  и получить

Сравнивая это с определением J^z по формуле (15.28), приходим к

Иначе говоря, если вы действуете оператором J^z на состояние с определенным моментом количества движения вокруг оси z, то получаете mh, умноженное на это состояние, где mhколи­чество z-компоненты момента количества движения. Все совер­шенно аналогично тому, как действие Н^ на состояние с опреде­ленной энергией дает Е|>.

Теперь хотелось бы перейти к некоторым приложениям идеи о сохранении момента количества движения, чтобы показать вам ее в действии. Дело в том, что в действительности все это очень просто. О том, что момент количества движения сохраняется, вы знали и раньше. Единственное, что вам нужно запомнить из этой главы, это что если у состояния |0> есть такое свойство, что при повороте на угол  вокруг оси z оно превращается в еim|0>, то z-компонента момента количества движения равна mh. Этих знаний достаточно, чтобы получить уйму инте­ресных вещей.