Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фейнман - 9. Квантовая механика II.docx
Скачиваний:
12
Добавлен:
12.11.2018
Размер:
3.69 Mб
Скачать

§ 6. Сводка матриц поворота

Теперь мы хотим собрать воедино все, что мы узнали о пово­ротах частиц со спином 1/2 и спином 1; это будет удобно для дальнейшего. Ниже вы найдете таблицы двух матриц поворота Rz () и Ry() для частиц со спином 1/2, для частиц со спином 1 и для фотонов (частиц со спином 1 и нулевой массой).

Для каждого из них приведены элементы матрицы <j|R|i> по­воротов вокруг оси 2 или оси y. Они, конечно, в точности экви­валентны амплитудам типа <+Т|0S>, которыми мы поль­зовались в предыдущих главах. Под Rz () мы понимаем, что берется проекция состояния на новую систему координат, по­вернутую на угол  вокруг оси z, причем для определения направ­ления поворота всегда применяется правило правой руки; RV() означает, что оси координат повернуты на угол 9 вокруг оси у. Зная эти два поворота, вы запросто сможете рассчитать любой поворот. Как обычно, матричный элемент пишется так, что со­стояние слева — это базисное состояние новой (повернутой) системы, а состояние справа — это базисное состояние старой (неповернутой) системы. Клетки таблицы можно истолковывать по-разному. К примеру, клетка ei/2 в табл. 15.1 означает, что матричный элемент < — |R| —> = е-i/2. Но это означает также, что R^|>=е-i/2| — } или что

<— | R^=<— |e-i. Это все одно и то же.

* Вспомните, что спин — это аксиальный вектор и при отражении он переворачивается.

* Мы провели ось z' в плоскости xz и используем матричные элементы для Ry (). То же получилось бы и при другом выборе осей.

* Мы сейчас предполагаем, что механизм квантовой механики вам настолько знаком, что обо всем можно говорить на чисто физическом языке, не тратя времени на расписывание всех математических деталей. Но если то, что мы здесь говорим, вам не очень ясно, то обратитесь к концу этого параграфа, где приведены некоторые недостающие детали.

* Мы попытались на худой конец доказать, что компонента момента количества движения вдоль направления движения у частицы с нулевой массой должна быть, например, кратной h/2, а не h/3. Но даже приведя в действие всевозможные свойства преобразований Лоренца (и многое дру­гое), мы с этим не справились. Может, этой не так. Надо было бы потол­ковать об этом с профессором Вигнером, который знает все о таких вещах.

* Прошу прощения! Этот угол имеет обратный знак по отношению к использовавшемуся в гл. 9, § 4.

** Как правило, момент количества движения атомной системы весьма удобно измерять в единицах h. Тогда можно говорить, что частица со спином 1/2 обладает по отношению к любой оси моментом количества движения ±1/2. И вообще, что z-компонента момента количества движе­ния есть т. Не приходится все время повторять h.

* Для большей строгости все эти рассуждения нужно было бы про­вести для малых поворотов . Раз каждый угол представляет собой сумму некоторого числа n таких поворотов, =n, то R^z ()=[Rz ()]n, и общее изменение фазы в n раз превосходит изменение для малого угла 8 и поэтому пропорционально .

* Точнее, мы определим R^z() как поворот физической системы на - вокруг оси z; это то же самое, что повернуть систему координат на +.

** Мы всегда вправе выбрать ось z вдоль направления поля при усло­вии, конечно, что его направление не меняется и что больше полей нет.

* В других книгах вы можете встретить формулы с другими знаками; вероятнее всего, в них используются углы, определенные по-иному.

* Кстати, вы можете доказать, что Q^ — это обязательно унитарный оператор, т. е. если он действует на |>, приводя к |>, умноженному на некоторое число, то это число должно иметь вид еi, где — веществен­но. Это мелкое замечание, а доказательство основано на следующем наб­людении. Всякая операция наподобие отражения или поворота не приво­дит к потере каких-либо частиц, так что нормировки |'> и |> должны совпадать; отличаться они вправе только на множитель с чисто вещест­венной фазой в показателе.

Литература: А. Р. Эдмондс, Угловые мо­менты в квантовой механике, в кн. «Деформация атомных ядер», ИЛ, 1958.