
- •§ 1. Состояния электрона в одномерной решетке
- •§ 2. Состояния определенной энергии
- •§ 3. Состояния, зависящие от времени
- •§ 4. Электрон в трехмерной решетке
- •§ 5. Другие состояния в решетке
- •§ 6. Рассеяние па нерегулярностях решетки
- •§ 7. Захват нерегулярностями решетки
- •§ 8. Амплитуды рассеяния и связанные состояния
- •§ 2. Примесные полупроводники
- •§ 3. Эффект Холла
- •§ 4. Переходы между полупроводниками
- •§ 5. Выпрямление на полупроводниковом переходе
- •§ 6. Транзистор
- •§ 2. Две спиновые волны
- •§ 3. Независимые частицы
- •§ 4. Молекула бензола
- •§ 5. Еще немного органической химии
- •§ 6. Другие применения приближения
- •§ 2. Волновая функция
- •§ 3. Состояния с определенным импульсом
- •§ 4. Нормировка состояний с определенной координатой х
- •§ 5. Уравнение Шредингера
- •§ 6. Квантованные уровни энергии
- •§ 2. Симметрия и ее сохранение
- •§ 3. Законы сохранения
- •§ 4. Поляризованный свет
- •§ 5. Распад 0
- •§ 6. Сводка матриц поворота
- •Глава 16
- •§ 2. Рассеяние света
- •§ 3. Аннигиляция позитрония
- •§ 4. Матрица поворота для произвольного спина
- •§ 5. Измерение ядерного спина
- •§ 6. Сложение моментов количества движения
- •Добавление 2. Сохранение четности при испускании фотона
- •Атом водорода
- •§ 2. Сферически симметричные решения
- •§ 3. Состояния с угловой зависимостью
- •§ 4. Общее решение для водорода
- •§ 5. Волновые функции водорода
- •§ 6. Периодическая таблица
- •Глава 18 операторы
- •§ 2. Средние энергии
- •§ 3. Средняя энергия атома
- •§ 4. Оператор места
- •§ 5. Оператор импульса
- •§ 6. Момент количества движения
- •§ 7. Изменение средних со временем
- •§ 2. Уравнение непрерывности для вероятностей
- •§ 3. Два рода импульсов
- •§ 4. Смысл волновой функции
- •§ 5. Сверхпроводимость
- •§ 6. Явление Мейсснера
- •§ 7. Квантование потока
- •§ 8. Динамика сверхпроводимости
- •§ 9. Переходы Джозефсона
§ 3. Состояния, зависящие от времени
В этом параграфе мы хотим подробнее обсудить поведение состояний в одномерной решетке. Если для электрона амплитуда того, что он окажется в хn, равна Сn, то вероятность найти его там будет |Сn|2. Для стационарных состояний, описанных уравнением (11.12), эта вероятность при всех хn одна и та же и со временем не меняется. Как же отобразить такое положение вещей, которое грубо можно было бы описать, сказав, что электрон определенной энергии сосредоточен в определенной области, так что более вероятно найти его в каком-то одном месте, чем в другом? Этого можно добиться суперпозицией нескольких решений, похожих на (11.12), но со слегка различными значениями k и, следовательно, с различными энергиями. Тогда, по крайней мере при t=0, амплитуда Сn вследствие интерференции различных слагаемых будет зависеть от местоположения, в точности так же, как получаются биения, когда имеется смесь волн разной длины [см. гл. 48 (вып. 4)]. Значит, можно составить такой «волновой пакет», что в нем будет преобладать волновое число k0, но будут присутствовать и другие волновые числа, близкие к k0.
В нашей суперпозиции стационарных состояний амплитуды с разными k будут представлять состояния со слегка различными энергиями и, стало быть, со слегка различными частотами; интерференционная картина суммарного Сn поэтому тоже будет меняться во времени, возникнет картина «биений». Как мы видели в гл. 48 (вып. 4), пики биений [места, где |С(xn)|2 наибольшие] с течением времени начнут двигаться по х; скорость их движения мы назвали «групповой». Мы нашли, что эта групповая скорость связана с зависимостью k от частоты формулой
все это в равной мере относится и к нашему случаю. Состояние электрона, имеющее вид «скопления», т. е. состояние, для которого Сn меняется в пространстве так, как у волнового пакета на фиг. 11.5, будет двигаться вдоль нашего одномерного «кристалла» с быстротой v, рапной d/dk, где =E/h.
Фиг. 11.5. Вещественная часть С(хn) как функция х для суперпозиции нескольких состояний с близкими энергиями.
Подставляя (11.16) вместо Е, получаем
Иными словами, электроны движутся по кристаллу с быстротой, пропорциональной самому характерному k. Тогда, согласно (11.16), энергия такого электрона пропорциональна квадрату его скорости, он ведет себя подобно классической частице. Пока мы рассматриваем все в столь крупном масштабе, что никаких тонкостей строения разглядеть не можем, наша квантовомеханическая картина приводит к тем же результатам, что и классическая физика.
В самом деле, если из (11.18) найти k и подставить его в (11.16), то получится
где mэфф — постоянная. Избыточная «энергия движения» электрона в пакете зависит от скорости в точности так же, как и у классической частицы. Постоянная mэфф, именуемая «эффективной массой», дается выражением
Заметьте еще, что можно написать
Если мы решим назвать mэффv «импульсом», то этот импульс будет связан с волновым числом k так же, как и у свободной частицы.
Не забывайте, что mэфф ничего общего не имеет с реальной массой электрона. Она может быть совсем другой, хотя следует сказать, что в реальных кристаллах часто случается, что ее порядок величины оказывается примерно таким же (в 2 или, скажем, в 20 раз больше, чем масса электрона в пустом пространстве).
Мы только что с вами раскрыли поразительную тайну — как это электрон в кристалле (например, пущенный в германий добавочный электрон) может пронестись через весь кристалл, может лететь по нему совершенно свободно, даже если ему приходится сталкиваться со всеми атомами. Это получается оттого, что его амплитуды, перетекая с одного атома на другой, прокладывают ему путь через кристалл. Вот отчего твердое тело может проводить электричество.