
- •Глава 6 водяной пар и его свойства
- •§6.1. Основные понятия и определения
- •§ 6.2. Термодинамическая фазовая рТ – диаграмма. Уравнение клапейрона - клаузиуса
- •§ 6.6. Основные параметры воды и водяного пара
- •§ 6.7. Процессы изменения состояния водяного пара в pν -,ts - и is -диаграммах
- •§ 6.8. Влажный воздух. Абсолютная влажность, влагосодержание и относительная влажность воздуха
- •§ 6.9. Теплоемкость и энтальпия влажного воздуха
- •Глава 7 термодинамика газового потока
- •§ 7.1. Уравнение энергии газового потока
- •§7.2. Располагаемая работа газового потока
- •§ 7.3. Основные закономерности соплового и диффузорного адиабатного течения газа
- •§ 7.4. Истечение идеального газа из суживающихся сопел
- •§ 7.5 Истечение идеального газа из комбинированного сопла лаваля
- •§ 7.6. Расчет истечения реальных газов и паров
- •7.7 Адиабатное дросселирование
- •§ 7.8. Дроссельный эффект (эффект джоуля-томсона)
- •§ 7.9. Газовые смеси
- •Глава 8 компрессорные машины
- •§ 8.1. Мощность привода и коэффициенты полезного действия компрессора
- •§ 8.2. Многоступенчатый компрессор
- •Глава 9 циклы поршневых двигателей внутреннего сгорания
- •§ 9.1. Краткие исторические сведения
- •§ 9.2. Классификация двс
- •§ 9.3. Циклы двс с подводом теплоты при постоянном объёме
- •§9.4. Циклы двс с подводом теплоты при постоянном давлении
- •§ 9.5. Циклы двс со смешанным подводом теплоты
- •Глава 10 циклы газотурбинных установок и реактивных двигателей
- •§ 10.1. Циклы гту с подводом теплоты при постоянном давлении
- •§10.2. Циклы гту с подводом теплоты при постоянном объеме
- •§ 10.3. Методы повышения термического кпд гту
- •§ 10.4. Циклы реактивных двигателей. Жидкостные реактивные двигатели
- •10.5. Воздушно-реактивные двигатели
- •§ 10.6. Пульсирующий воздушно-реактивный двигатель
- •§ 10.7. Компрессорные воздушно-реактивные двигатели
- •§ 10.8. Термодинамические методы сравнения циклов тепловых двигателей
- •Глава 11 циклы паросиловых установок мгд-генератор
- •§ 11.1. Цикл карно во влажном паре и его недостатки
- •§ 11.2. Основной цикл псу-цикл ренкина
- •§ 11.3. Полезная работа цикла ренкина. Работа питательного насоса
- •§ 11.4. Термический кпд цикла ренкина
- •§ 11.5. Влияние параметров пара на термический кпд цикла ренкина
- •§ 11.6. Промежуточный перегрев пара
- •§ 11.7. Регенеративный цикл паросиловой установки
- •§ 11.8. Бинарные (двойные) циклы
- •§ 11.9. Циклы парогазовых установок
- •§ 11.10. Циклы атомных электростанций
- •§ 11.11. Циклы электрических станций с магнитогидродинамическими генераторами
- •Глава 12 циклы холодильных машин
- •§12.1. Цикл воздушной холодильной установки
- •§ 12.2. Цикл паровой компрессорной холодильной установки
- •§ 12.3. Цикл холодильной установки абсорбционного типа
- •§ 12.4. Цикл пароэжекторной холодильной установки
- •§ 12.5. Тепловой насос
- •§ 12.6. Вихревая труба
- •§ 12.7. Термотрансформаторы
- •Глава 13 элементы химической термодинамики
- •§ 13.1. Классификация химических реакций
- •§13.2. Первый закон термодинамики в применении к химическим реакциям
- •§ 13.3. Тепловой эффект реакции
- •§ 13.4. Теплоты химических реакций
- •§ 13.5. Закон гесса
- •§13.6..Закон кирхгофа
- •§ 13.7. Применение второго закона термодинамики к химическим процессам
- •§ 13.8. Изохорно-изотермический и изобарно-изотермический потенциалы
- •§13.9. Максимальная работа реакции
- •§ 13.10. Уравнения максимальной работы (уравнения гиббса-гельмгольца)
- •13.11. Химический потенциал
- •§ 13.12. Условия равновесия в изолированных однородных (гомогенных) системах
- •§ 13.13. Условия равновесия в изолированных неоднородных (гетерогенных) системах и химических реакциях
- •§13.14. Равновесие в химических реакциях
- •§ 13.15. Закон действующих масс. Константы равновесия химических реакций
- •§ 13.16. Термическая диссоциация. Степень диссоциации
- •§ 13.17. Зависимость между константой равновесия и степенью диссоциации
- •§ 13.18. Зависимость между константой равновесия и максимальной работой. Уравнение изотермы химической реакции
- •§ 13.19. Влияние температуры реакции на химическое равновесие. Принцип ле-шателье
- •§ 13.20, Тепловая теорема нернста. Третье начало термодинамики
- •§ 13.21. Третье начало термодинамики в формулировке планка (постулат планка)
§ 9.5. Циклы двс со смешанным подводом теплоты
Одним из недостатков двигателей, в которых применяется цикл с подводом теплоты при постоянном давлении, является необходимость использования компрессора, применяемого для подачи топлива. Наличие компрессора усложняет конструкцию и уменьшает экономичность двигателя, т.к. на его работу затрачивается 6-10 % от общей мощности двигателя.
С целью упрощения конструкции и увеличения экономичности двигателя русский инженер Г.В.Тринклер разработал проект бескомпрессорного двигателя высокого сжатия. Этот двигатель лишен недостатков рассмотренных выше двух типов двигателей. Основное его отличие в том, что жидкое топливо с помощью топливного насоса подается через форсунку в головку цилиндра, где оно воспламеняется и горит вначале при постоянном объеме, а потом при постоянном давлении. На рис. 9.4 представлен идеальный цикл двигателя со смешанным подводом теплоты в pv - координатах.
Рис.9.4
В адиабатном
процессе 1-2 рабочее тело сжимается до
параметров в точке 2. В изохорном
процессе 2-3 к нему подводится первая
доля теплоты
,
а в изобарном процессе 3-4 - вторая -
.
В процессе 4-5 происходит адиабатное
расширение рабочего тела и по изохоре
5-1 оно возвращается в исходное состояние
с отводом теплоты q2
в теплопрнемннк.
Характеристиками цикла являются:
- степень сжатия;
- степень повышения давления,
-
степень предварительного расширения.
Количества
подведенной
и
отведенной q2
теплот
определяются
по формулам.
;
;
.
Термический кпд цикла будет
.
Найдем параметры рабочего тела в характерных точках цикла.
Точка 2.
;
;
.
Отсюда
.
Точка 3.
;
;
;
.
Точка 4.
;
;
;
.
Точка 5.
;
;
;
;
;
.
Подставив найденные значения температур в формулу для кпд, будем иметь
. (9.3)
Отсюда следует, что с увеличением k, ε и λ кпд цикла возрастает, а с увеличением ρ уменьшается.
Цикл со смешанным подводом теплоты обобщает циклы с изобарным и изохорным подводом теплоты. Если положить λ = 1 (что означает отсутствие подвода теплоты при постоянном объеме (р2 = р3)), то формула (9.3) приводится к формуле (9.2), т.е. к формуле для кпд цикла ДВС с изобарным подводом теплоты. Если принять р = 1 (что означает отсутствие подвода теплоты при постоянном давлении (ν3 = ν4)), то формула (9.3) приводится к формуле (9.1) для кпд цикла с изохорным подводом теплоты.
Цикл со смешанным подводом теплоты лежит в основе работы большинства современных дизелей.
Глава 10 циклы газотурбинных установок и реактивных двигателей
Газотурбинные установки (ГТУ) имеют многие важные преимущества по сравнению с поршневыми двигателями. Газовые турбины имеют относительно небольшие габариты и малую массу, в них нет деталей с возвратно-поступательным движением, они могут выполняться с достаточно большими единичными мощностями. В газовых турбинах отсутствует основной недостаток поршневых двигателей - невозможность расширения рабочего тела в цилиндре двигателя до атмосферного давления.
Практическое применение нашли ГТУ со сгоранием топлива при постоянном давлении и постоянном объеме. Им соответствуют идеальные циклы с подводом теплоты в процессе при постоянном давлении и постоянном объеме.